990 resultados para story image
Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images
Resumo:
In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.
Resumo:
The Australian e-Health Research Centre in collaboration with the Queensland University of Technology's Paediatric Spine Research Group is developing software for visualisation and manipulation of large three-dimensional (3D) medical image data sets. The software allows the extraction of anatomical data from individual patients for use in preoperative planning. State-of-the-art computer technology makes it possible to slice through the image dataset at any angle, or manipulate 3D representations of the data instantly. Although the software was initially developed to support planning for scoliosis surgery, it can be applied to any dataset whether obtained from computed tomography, magnetic resonance imaging or any other imaging modality.
Resumo:
Report and narrative on the history of the Brisbane chapter of the International Game Developers Association (IGDA) for the Australian issue of the IGDA Perspectives monthly newsletter.
Resumo:
This paper presentation addresses design-based research that became a catalyst for social change among a disadvantaged school community. The aim of the longitudinal research was to protoype an evidence-based model for whole school digital and print literacy pedagogy renewal among students from low socioeconomic, Indigenous, and migrant backgrounds. Applying Anthony Gidden’s principle of the “duality of structure”, the paper presentation interprets how the collective agency of researchers and the school community began to transform the structural properties of the institution in a two-way dynamism, so that the structural properties of the school were not outside of individual action, but were implicated in its reproduction and transformation.
Resumo:
Throughout the world, state and nation standardised testing of children, has become a "huge industry" (English, 2002). Although English is referring to the American system which has been involved in standardised testing for over half a century, the same could be said of many other countries, including Australia. It has been only in recent years that Australia has embraced national testing as part of a wider reform effort to bring about increased accountability in schooling. The results of high-stakes tests in Australia are now published in newspapers and electronically on the Australian federal government's MySchool website (www.myschoold.edu.au). MySchool provides results on the National Assessment Program - Literacy and Numeracy (NAPLAN) for students in Years 3,5, 7 and 9. Data are available that compare schools to statistically similar schools. This more recent publication of national testing results in Australia is a visible example of "contractual accountability", described by Mulford, Edmunds, Kendall, Kendall and Bishop (2008) as " the degree to which [actors] are fulfilling the expectations of particular audiences in terms of standards, outcomes and results" (p.20).
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Designing for engagement towards healthier lifestyles through food image sharing : the case of I8DAT
Resumo:
This paper introduces the underlying design concepts of I8DAT, a food image sharing application that has been developed as part of a three-year research project – Eat, Cook, Grow: Ubiquitous Technology for Sustainable Food Culture in the City (http://www.urbaninformatics .net/projects/food) – exploring urban food practices to engage people in healthier, more environmentally and socially sustainable eating, cooking, and growing food in their everyday lives. The key aim of the project is to produce actionable knowledge, which is then applied to create and test several accessible, user-centred interactive design solutions that motivate user-engagement through playful and social means rather than authoritative information distribution. Through the design and implementation processes we envisage to integrate these design interventions to create a sustainable food network that is both technical and socio-cultural in nature (technosocial). Our primary research locale is Brisbane, Australia, with additional work carried out in three reference cities with divergent geographic, socio-cultural, and technological backgrounds: Seoul, South Korea, for its global leadership in ubiquitous technology, broadband access, and high population density; Lincoln, UK, for the regional and peri-urban dimension it provides, and Portland, Oregon, US, for its international standing as a hub of the sustainable food movement.
Resumo:
Thirty-five years ago, a landmark article entitled 'What The "Good Language Learner" Can Teach Us' suggested that if more was known about what 'successful learners' did, then those strategies could be taught to poorer learners to enhance learning (Rubin, 1975, p. 42). Since publication of Rubin's article, language instruction has begun to encompass technological applications (Chinnery, 2006) through mobile-assisted language learning (MALL or m-learning) like podcasts. Podcasting extends the classroom, offers convenience for diverse learners, and provides authentic listening opportunities. Although the effects of podcasting in higher education have yet to be investigated (Educause, 2007), this article describes how action research lead to the creation of a student learning strategy webpage featuring peer podcasts and successful language learning strategies in higher education.
Resumo:
Purpose: This study provides a simple method for improving precision of x-ray computed tomography (CT) scans of irradiated polymer gel dosimetry. The noise affecting CT scans of irradiated gels has been an impediment to the use of clinical CT scanners for gel dosimetry studies. Method: In this study, it is shown that multiple scans of a single PAGAT gel dosimeter can be used to extrapolate a ‘zero-scan’ image which displays a similar level of precision to an image obtained by averaging multiple CT images, without the compromised dose measurement resulting from the exposure of the gel to radiation from the CT scanner. Results: When extrapolating the zero-scan image, it is shown that exponential and simple linear fits to the relationship between Hounsfield unit and scan number, for each pixel in the image, provides an accurate indication of gel density. Conclusions: It is expected that this work will be utilised in the analysis of three-dimensional gel volumes irradiated using complex radiotherapy treatments.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
The OED reminds us as surely as Ovid that a labyrinth is a “structure consisting of a number of intercommunicating passages arranged in bewildering complexity, through which it is it difficult or impossible to find one’s way without guidance”. Both Shaun Tan’s The Arrival (2006) and Matt Ottley’s Requiem for a Beast: A Work for Image, Word and Music (2007) mark a kind of labyrinthine watershed in Australian children’s literature. Deploying complex, intercommunicating logics of story and literacy, these books make high demands of their reader but also offer guidance for the successful navigation of their stories; for their protagonists as surely as for readers. That the shared logic of navigation in each book is literacy as privileged form of meaning-making is not surprising in the sense that within “a culture deeply invested in myths of individualism and self-sufficiency, it is easy to see why literacy is glorified as an attribute of individual control and achievement” (Williams and Zenger 166). The extent to which these books might be read as exemplifying desired norms of contemporary Australian culture seems to be affirmed by the fact of Tan and Ottley winning the Australian “Picture Book of the Year” prize awarded by the Children’s Book Council of Australia in 2007 and 2008 respectively. However, taking its cue from Ottley’s explicit intertextual use of the myth of Theseus and from Tan’s visual rhetoric of lostness and displacement, this paper reads these texts’ engagement with tropes of “literacy” in order to consider the ways in which norms of gender and culture seemingly circulated within these texts might be undermined by constructions of “nation” itself as a labyrinth that can only partly be negotiated by a literate subject. In doing so, I argue that these picture books, to varying degrees, reveal a perpetuation of the “literacy myth” (Graff 12) as a discourse of safety and agency but simultaneously bear traces of Ariadne’s story, wherein literacy alone is insufficient for safe navigation of the labyrinth of culture.
Resumo:
Texture analysis and textural cues have been applied for image classification, segmentation and pattern recognition. Dominant texture descriptors include directionality, coarseness, line-likeness etc. In this dissertation a class of textures known as particulate textures are defined, which are predominantly coarse or blob-like. The set of features that characterise particulate textures are different from those that characterise classical textures. These features are micro-texture, macro-texture, size, shape and compaction. Classical texture analysis techniques do not adequately capture particulate texture features. This gap is identified and new methods for analysing particulate textures are proposed. The levels of complexity in particulate textures are also presented ranging from the simplest images where blob-like particles are easily isolated from their back- ground to the more complex images where the particles and the background are not easily separable or the particles are occluded. Simple particulate images can be analysed for particle shapes and sizes. Complex particulate texture images, on the other hand, often permit only the estimation of particle dimensions. Real life applications of particulate textures are reviewed, including applications to sedimentology, granulometry and road surface texture analysis. A new framework for computation of particulate shape is proposed. A granulometric approach for particle size estimation based on edge detection is developed which can be adapted to the gray level of the images by varying its parameters. This study binds visual texture analysis and road surface macrotexture in a theoretical framework, thus making it possible to apply monocular imaging techniques to road surface texture analysis. Results from the application of the developed algorithm to road surface macro-texture, are compared with results based on Fourier spectra, the auto- correlation function and wavelet decomposition, indicating the superior performance of the proposed technique. The influence of image acquisition conditions such as illumination and camera angle on the results was systematically analysed. Experimental data was collected from over 5km of road in Brisbane and the estimated coarseness along the road was compared with laser profilometer measurements. Coefficient of determination R2 exceeding 0.9 was obtained when correlating the proposed imaging technique with the state of the art Sensor Measured Texture Depth (SMTD) obtained using laser profilometers.