983 resultados para stiffness
Resumo:
Obesity is a low grade inflammatory state associated with premature cardiovascular morbidity and mortality. Along with traditional risk factors the measurement of endothelial function, insulin resistance, inflammation and arterial stiffness may contribute to the assessment of cardiovascular risk. We conducted a randomised placebo controlled trial to assess the effects of 12 weeks treatment with a PPAR-alpha agonist (fenofibrate) and a PPAR-gamma agonist (pioglitazone) on these parameters in obese glucose tolerant men. Arterial stiffness was measured using augmentation index and pulse wave velocity (PWV). E-selectin, VCAM-1 and ICAM-1 were used as markers of endothelial function. Insulin sensitivity improved with pioglitazone treatment (p=0.001) and, in keeping with this, adiponectin increased by 85.2% (p
Resumo:
This research presents the development of an analytical model to predict the elastic stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of altering the weaving parameters and constituent material types. The present approach formulates expressions at the micro level with the aim of calculating more representative volume fractions of a group of elements to the layer. The rationale in representing the volume fractions within the unit cell more accurately was to improve the elastic stiffness predictions compared to existing analytical modelling approaches. The models developed in this work show good agreement between experimental data and improvement on existing predicted values by models published in literature.
Resumo:
The authors have recently described a cold-formed steel portal framing system in which simple bolted moment-connections, formed through brackets, were used for the eaves and apex joints. Such connections, however, cannot be considered as rigid because of localised in-plane elongation of the bolt-holes caused by bearing against the bolt-shanks. To therefore predict the initial stiffness of such connections, it is necessary to know the initial bolt-hole elongation stiffness k(b). In this paper, a finite element-solid idealisation of a bolted lap joint in shear will be described that can be used to determine k(b); the results obtained are validated against experimental data. A beam idealisation of a cold-formed steel bolted moment-connection is then described, in which spring elements are used to idealise the rotational flexibility of the bolt-groups resulting from bolt-hole elongation: Using the value of k(b) in the beam idealisation, the deflections predicted are shown to be similar to those measured experimentally in laboratory tests conducted on the apex joint of a cold-formed steel portal frame. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Analysis of non-traditional Variable Stiffness (VS) laminates, obtained by steering the fiber orientation as a spatial function of location, have shown to improve buckling load carrying capacity of flat rectangular panels under axial compressive loads. In some cases the buckling load of simply supported panels doubled compared to the best conventional laminate with straight fibers. Two distinct cases of stiffness variation, one due to fiber orientation variation in the direction of the loading, and the other one perpendicular to the loading direction, were identified as possible contributors to the buckling load improvements. In the first case, the increase was attributed to the favorable distribution of the transverse in-plane stresses over the panel platform. In the second case, a higher degree of improvement was obtained due to the re-distribution of the applied in-plane loads. Experimental results, however, showed substantially higher levels of buckling load improvements compared with theoretical predictions. The additional improvement was determined to be due to residual stresses introduced during curing of the laminates. The present paper provides a simplified thermomechanical analysis of residual stress state of variable stiffness laminates. Systematic parametric analyses of both cases of fiber orientation variations show that, indeed much higher buckling loads could result from the residual stresses present in such laminates.