161 resultados para sonication


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy (PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used to observe the features of the flakes. N-methyl-2-pyrrolidinone (NMP), dimethylformamide (DMF), and isopropanol are used as co-solvents to enhance the supercritical carbon dioxide treatment. As a result, the PCS results show that the flakes obtained from high critical density treatment (low temperature and high pressure) are more stable due to more negative charges of zeta potential, but have smaller sizes than those from low critical density (high temperature and low pressure). However, when an additional 1-hour sonication is applied, the size of the flakes from low critical density treatment becomes smaller than those from high critical density treatment. This is probably due to more CO2 molecules stacked between the layers of the graphitic flakes. The zeta potentials of the sonicated samples were slightly more negative than nonsonicated samples. NMP and DMF co-solvents maintain stability and prevented reaggregation of the flakes better than isopropanol. The flakes tend to be larger and more stable as the treatment time increases since larger flat area of graphite is exfoliated. In these experiments, the temperature has more impact on the flakes than pressure. The BET surface area resultsshow that CO2 penetrates the graphite layers more than N2. Moreover, the negative surface area of the treated graphite indicates that the CO2 molecules may be adsorbed between the graphite layers during supercritical treatment. The FE-SEM and AFM images show that the flakes have various shapes and sizes. The effects of surfactants can be observed on the FE-SEM images of the samples in one percent by weight solution of SDBS in water since the sodium dodecylbenzene sulfonate (SDBS) residue covers all of the remaining flakes. The AFM images show that the vertical thickness of the graphitic flakes can ranges from several nanometers (less than ten layers thick), to more than a hundred nanometers. In conclusion, supercritical carbon dioxide treatment is a promising step compared to mechanical and chemical exfoliation techniques in the large scale production of thin graphitic flake, breaking down the graphite flakes into flakes only a fewer graphene layers thick.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes were first cut and functionalized with a newly developed reaction involving autoclaving and sonication in hydrogen peroxide. The functionalized nanotubes were characterized and evaluated for aqueous solubility. Studies which relate reaction conditions to final carbon nanotube length were conducted. Hydroxyl groups present on the carbon nanotubes served as a platform for a series of addition reactions, with the objective of conjugating streptavidin and fluorescent markers onto the carbon nanotubes. The modified nanotubes were attached onto the surface of biotinylated mesenchymal stem cells, creating a novel, tumor-homing delivery system for photothermal anticancer agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transbilayer aminophospholipid distributions in small unilamellar vesicles comprising of phosphatidylethanolamine or its analogs (bearing modifications in the polar headgroup) and egg hosphatidylcholine were ascertained using trinitrobenzenesulfonic acid as external membrane probe. These vesicles, containing 10-30 mol% phosphatidylethanolamine or its analogs, were formed by sonication and fractionated by centrifugation. Phosphatidylethanolamine at low concentrations (10 mol%) preferentially localized in the outer monolayer. This preference appeared to be reversed at higher phosphatidylethanolamine concentrations (30 mol%). Unlike this finding, phosphatidylethanolamine bearing ethyl, phenyl and benzyl substituents at the carbon atom adjacent to the amino group distributed mainly in the outer surface irrespective of their concentrations. Similar results were obtained when the phosphate and amino groups were separated by three methylene residues. These observations suggest that the effective polar headgroup volume and/or hydrogen-bonding capacity of phospholipids are the important factors that determine their distribution in small unilamellar vesicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). In sediment samples from Hydrate Ridge, the Isis Mud Volcano and the Gulf of Mexico, DSS cells accounted for 3-6% of all DAPI-stained single cells. Out of these, 8-17% were labelled with probe SEEP1a-1441. This translated into relative abundances of single SEEP-SRB1a cells of 0.3% to 0.7%. Contrastingly, in a sediment sample from the Gullfaks oil field, DSS cells accounted for 18% and SEEP-SRB1a for 9% of all single cells. This sediment sample also featured an unusually high abundance of single ANME-2 cells and only very few ANME-2/DSS aggregates in comparison with other AOM habitats. Considering also the nature of the sample, it is likely that the high number of single ANME-2 and SEEP-SRB1a cells were an artifact of sample preparation. Here, harsher sonication was required to remove the microorganisms from coarse sand prior to CARD-FISH analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a) cells contain PrPC and PrPSc. After lysis of ScN2a cells in ice-cold Triton X-100, both PrP isoforms and an N-terminally truncated form of PrPC (PrPC-II) were found concentrated in detergent-insoluble complexes resembling CLDs that were isolated by flotation in sucrose gradients. Similar results were obtained when CLDs were purified from plasma membranes by sonication and gradient centrifugation; with this procedure no detergents are used, which minimizes artifacts that might arise from redistribution of proteins among subcellular fractions. The caveolar markers ganglioside GM1 and H-ras were found concentrated in the CLD fractions. When plasma membrane proteins were labeled with the impermeant reagent sulfo-N-hydroxysuccinimide-biotin, both PrPC and PrPSc were found biotinylated in CLD fractions. Similar results on the colocalization of PrPC and PrPSc were obtained when CLDs were isolated from Syrian hamster brains. Our findings demonstrate that both PrPC and PrPSc are present in CLDs and, thus, support the hypothesis that the PrPSc formation occurs within this subcellular compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accumulation of microtubule-associated protein tau into fibrillar aggregates is the hallmark of Alzheimer’s disease and other neurodegenerative disorders, collectively referred to as tauopathies. Fibrils can propagate from one cell to the next and spread throughout the brain. However, a study shows that only small aggregates can be taken up by cultured neuronal cells. The mechanisms that lead to the breakage of fibrils into smaller fragments remain unknown. In yeast, the AAA+ chaperone HSP104 processes the reactivation of protein aggregates and is responsible for fragmentation of fibrils. This study focused on investigating the effects of molecular chaperones on tau fibrils and using HSP104 as a model system to test whether we can monitor fibril fracturing. The assays used to detect the chaperone’s actions on tau utilized acrylodan fluorescence, thioflavin T fluorescence, and sedimentation. Tau fibrils were either formed with a cofactor, heparin, to accelerate assembly or without a cofactor. In the process of investigating the effects of HSP104 on tau fibrils, this study established an assay to determine the effects of breakage on the seeding properties of tau fibrils. Our findings demonstrated that the sonication of tau fibrils produces smaller fragments (seeds) that accelerate the conversion of monomeric tau into fibrils. The use of this assay with HSP104 provided evidence that HSP104 inhibits the elongation of tau fibrils. Indeed, HSP104 inhibits the aggregation of soluble tau into aggregates. However, tau fibril breakage and dissociation were not observed with HSP104, either alone or in combination with co-chaperones (HSP70 and HSP40). Our findings provide insights into the seeding properties of tau fibrils, and suggest that fragmentation is a critical part of tau assembly. This knowledge should be valuable for understanding tau fibril aggregation and propagation in the brain, which is necessary to identify new treatments for neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strategy for a simple dispersion of commercial multi-walled carbon nanotubes (MWCNTs) using two organosilicones, polycarbosilane SMP10 and polysilazane Ceraset PSZ20, in organic solvents such as cyclohexane, tetrahydrofuran (THF), m-xylene and chloroform is presented. In just a few minutes the combined action of sonication and the presence of Pt(0) catalyst is sufficient to obtain a homogeneous suspension, thanks to the rapid hydrosilylation reaction between SiH groups of the polymer and the CNT sidewall. The as-produced suspensions have a particle size distribution <1μm and remain unchanged after several months. A maximum of 0.47 and 0.50mg/ml was achieved, respectively, for Ceraset in THF and SMP10 in chloroform. Possible applications as polymeric and ceramic thin films or aerogels are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-04

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two sets of connected membranes induced in Kunjin virus-infected cells are characterized by the presence of NS3 helicase/protease in both, and by RNA-dependent RNA polymerase (RdRp) activity plus the associated double-stranded RNA (dsRNA) template in vesicle packets (VP), or by the absence of both the VP-specific markers in the convoluted membranes/paracrystalline arrays (CM/PC). Attempts were made to separate flavivirus-induced membranes by sedimentation or flotation analyses in density gradients of sucrose or iodixanol, respectively, after treatment of cell lysates by sonication, osmotic shock, or tryptic digestion. Only osmotic shock treatment provided suggestive evidence of separation. This was explored by flow cytometry analysis (FCA) of RdRp active membrane fractions from a sucrose gradient, using dual fluorescent labelling via antibodies to NS3 and dsRNA. FCA revealed the presence of a dual labelled membrane population indicative of VP, and in a faster sedimenting fraction a membrane population able to be labelled only in NS3, representative of CM/PC and associated (R)ER. It was postulated that osmotic shock ruptured the bounding membrane of the VP, releasing the enclosed small vesicles associated with the Kunjin virus replication complex characterized previously. Notably, the presence of the full spectrum of nonstructural proteins in some membrane fractions was not a reliable marker for RdRp activity. These experiments may provide the opportunity for isolation of relatively pure flavivirus replication complexes in their native membrane-associated state by fluorescence-activated cell sorting. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have carried out a discovery proteomics investigation aimed at identifying disease biomarkers present in saliva, and, more specifically, early biomarkers of inflammation. The proteomic characterization of saliva is possible due to the straightforward and non-invasive sample collection that allows repetitive analyses for pharmacokinetic studies. These advantages are particularly relevant in the case of newborn patients. The study was carried out with samples collected during the first 48 hours of life of the newborns according to an approved Ethic Committee procedure. In particular, the salivary samples were collected from healthy and infected (n=1) newborns. Proteins were extracted through cycles of sonication, precipitated in ice cold acetone, resuspended and resolved by 2D-electrophoresis. MALDI TOF/TOF mass spectrometry analysis was performed for each spot obtaining the proteins’ identifications. Then we compared healthy newborn salivary proteome and an infected newborn salivary proteome in order to investigate proteins differently expressed in inflammatory condition. In particular the protein alpha-1-antitrypsin (A1AT), correlated with inflammation, was detected differently expressed in the infected newborn saliva. Therefore, in the second part of the project we aimed to develop a robust LC-MS based method that identifies and quantifies this inflammatory protein within saliva that might represent the first relevant step to diagnose a condition of inflammation with a no-invasive assay. The same LC-MS method is also useful to investigate the presence of the F allelic variant of the A1AT in biological samples, which is correlated with the onset of pulmonary diseases. In the last part of the work we analysed newborn saliva samples in order to investigate how phospholipids and mediators of inflammation (eicosanoids) are subject to variations under inflammatory conditions and a trend was observed in lysophosphatidylcholines composition according to the inflammatory conditions.