912 resultados para smart grid
Resumo:
Among the main features that are intended to become part of what can be expected from the Smart City, one of them should be an improved energy management system, in order to benefit from a healthier relation with the environment, minimize energy expenses, and offer dynamic market opportunities. A Smart Grid seems like a very suitable infrastructure for this objective, as it guarantees a two-way information flow that will provide the means for energy management enhancement. However, to obtain all the required information, another entity must care about all the devices required to gather the data. What is more, this entity must consider the lifespan of the devices within the Smart Grid—when they are turned on and off or when new appliances are added—along with the services that devices are able to provide. This paper puts forward SMArc—an acronym for semantic middleware architecture—as a middleware proposal for the Smart Grid, so as to process the collected data and use it to insulate applications from the complexity of the metering facilities and guarantee that any change that may happen at these lower levels will be updated for future actions in the system.
Resumo:
La tendencia actual de las redes de telecomunicaciones conduce a pensar en un futuro basado en el concepto emergente de las Smart Cities¸ que tienen como objetivo el desarrollo urbano basado en un modelo de sostenibilidad que responda a las necesidades crecientes de las ciudades. Dentro de las Smart Cities podemos incluir el concepto de Smart Grid, el cual está referido a sistemas de administración y producción de energía eficientes, que permitan un sistema energético sostenible, y que den cabida a las fuentes de energía renovables. Sistemas de este tipo se muestran a los usuarios como un conjunto de servicios con los que interactuar sin ser tan sólo un mero cliente, sino un agente más del entorno energético. Por otro lado, los sistemas de software distribuidos son cada vez más comunes en una infraestructura de telecomunicaciones cada vez más extensa y con más capacidades. Dentro de este ámbito tecnológico, las arquitecturas orientadas a servicios han crecido exponencialmente sobre todo en el sector empresarial. Con sistemas basados en estas arquitecturas, se pueden ofrecer a empresas y usuarios sistemas software basados en el concepto de servicio. Con la progresión del hardware actual, la miniaturización de los equipos es cada vez mayor, sin renunciar por ello a la potencia que podemos encontrar en sistemas de mayor tamaño. Un ejemplo es el dispositivo Raspberry Pi, que contiene un ordenador plenamente funcional contenido en el tamaño de una cajetilla de tabaco, y con un coste muy reducido. En este proyecto se pretenden aunar los tres conceptos expuestos. De esta forma, se busca utilizar el dispositivo Raspberry Pi como elemento de despliegue integrado en una arquitectura de Smart Grid orientada a servicios. En los trabajos realizados se ha utilizado la propuesta definida por el proyecto de I+D europeo e-GOTHAM, con cuya infraestructura se ha tenido ocasión de realizar diferentes pruebas de las descritas en esta memoria. Aunque esta arquitectura está orientada a la creación de una Smart Grid, lo experimentado en este PFG podría encajar en otro tipo de aplicaciones. Dentro del estudio sobre las soluciones software actuales, se ha trabajado en la evaluación de la posibilidad de instalar un Enterprise Service Bus en el Raspberry Pi y en la optimización de la citada instalación. Una vez conseguida una instalación operativa, se ha desarrollado un controlador de un dispositivo físico (sensor/actuador), denominado Dispositivo Lógico, a modo de prueba de la viabilidad del uso del Raspberry Pi para actuar como elemento en el que instalar aplicaciones en entornos de Smart Grid o Smart Home. El éxito logrado con esta experimentación refuerza la idea de considerar al Raspberry Pi, como un importante elemento a tener en cuenta para el despliegue de servicios de Smart Cities o incluso en otros ámbitos tecnológicos. ABSTRACT. The current trend of telecommunication networks lead to think in a future based on the emerging concept of Smart Cities, whose objective is to ensure the urban development based on a sustainable model to respond the new necessities of the cities. Within the Smart cites we can include the concept of Smart Grid, which is based on management systems and efficient energy production, allowing a sustainable energy producing system, and that includes renewable energy sources. Systems of this type are shown to users as a set of services that allow users to interact with the system not only as a single customer, but also as other energy environment agent. Furthermore, distributed software systems are increasingly common in a telecommunications infrastructure more extensive and with more capabilities. Within this area of technology, service-oriented architectures have grown exponentially especially in the business sector. With systems based on these architectures, can be offered to businesses and users software systems based on the concept of service. With the progression of the actual hardware, the miniaturization of computers is increasing, without sacrificing the power of larger systems. An example is the Raspberry Pi, which contains a fully functional computer contained in the size of a pack of cigarettes, and with a very low cost. This PFG (Proyecto Fin de Grado) tries to combine the three concepts presented. Thus, it is intended to use the Raspberry Pi device as a deployment element integrated into a service oriented Smart Grid architecture. In this PFG, the one proposed in the European R&D e-GOTHAM project has been observed. In addition several tests described herein have been carried out using the infrastructure of that project. Although this architecture is oriented to the creation of a Smart Grid, the experiences reported in this document could fit into other applications. Within the study on current software solutions, it have been working on assessing the possibility of installing an Enterprise Service Bus in the Raspberry Pi and optimizing that facility. Having achieved an operating installation, it has been developed a driver for a physical device (sensor / actuator), called logical device, for testing the feasibility of using the Raspberry Pi to act as an element in which to install applications in Smart Grid and Smart Home Environments. The success of this experiment reinforces the idea of considering the Raspberry Pi as an important element to take into account in the deployment of Smart Cities services or even in other technological fields.
Resumo:
This paper focuses on the problems associated with privacy protection in smart grid. We will give an overview of a possible realization of a privacy-preserving approach that encompasses privacy-utility tradeoff into a single model. This approach proposes suppression of low power frequency components as a solution to reduce the amount of information leakage from smart meter readings. We will consider the applicability of the procedure to hide the appliance usage with respect to the type of home devices.
Resumo:
Summary. The European electricity sector will have to deal with a huge challenge in the decades to come. On the one hand, electrical power is increasingly substituted for other forms of energy. It has been forecast that electricity demand will increase in the future (notably because of new needs in transport and heat sectors), although it is currently stagnant, mainly because of the economic crisis. Unless a major alternative energy source is discovered, electricity will become the central energy pillar in the long term. On the other hand, electricity production remains uncertain and will depend on numerous factors: the growth of renewable energy and decentralized energy, the renewal of old power generation capacities, increased external dependency, CO2 charges, etc. This increases the demand for electricity networks that are more reliable, more efficient, and more flexible. Europe’s current electricity networks are ageing, and, as already indicated by the International Energy Agency, many of them will need to be modernized or replaced in the decades to come. Finally, the growing impact of energy trading also needs to be taken into account. These considerations explain the need to modernize the electric grid through various ICT means. This modernization alone may allow the grid to become more flexible and interactive, to provide real time feedback, more adaptation to a fluctuating demand, and finally to reduce the global electricity costs. The paper begins with a description of the EU definition of the term ‘smart grid’ (§ 1) and of the body in charge of advising the Commission (§ 2). The EU legal framework applicable to smart grids is also detailed (§ 3). It is a rather complex domain, connected to various regulations. The paper then examines three critical factors in the development of smart grids (and smart meters as a precondition). Standardization is quite complex, but absolutely essential (§ 4). Innovation is not easily put into action (§ 5). Finally, as digital insecurity has worsened dramatically in recent years, the security of electricity networks, and especially their multiplied electronic components, will become increasingly important (§ 6). Lastly, the paper provides a concise overview of the progress of smart grids in the EU in recent years (§ 7). In a nutshell, the conclusion is that progress is quite slow, many obstacles remain, and, given the appearance of many new regulatory problems, it would be useful to organize a review of the present EU strategy.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
Smart Grids are a new trend of electric power distribution, the future of current systems. These networks are continually being introduced in order to improve the reliability of systems, providing alternatives to energy supply and cost savings. Faced with increasing electric power grids complexity, the energy demand and the introduction of alternative sources to energy generation, all components of system require a fully integration in order to achieve high reliability and availability levels (dependability). The systematization of a Smart Grid from the Fault Tree formalism enable the quantitative evaluation of dependability of a specific scenario. In this work, a methodology for dependability evaluation of Smart Grids is proposed. A study of case is described in order to validate the proposal. With the use of this methodology, it is possible to estimate during the early design phase the reliability, availability of Smart Grid beyond to identify the critical points from the failure and repair distributions of components.
Resumo:
La presente tesi ha come obiettivo quello di sviluppare un modello per la gestione ottimizzata delle unità di generazione e di accumulo di una microrete elettrica. La tesi analizza, come caso studio di riferimento, una microrete contenente impianti di generazione da fonti rinnovabili, sistemi di accumulo a batteria (BES:Battery Energy System) e stazioni di ricarica per veicoli elettrici. In particolare le stazioni di ricarica sono a flusso bidirezionale, in grado di fornire servizi di tipo "grid-to-vehicle"(G2V) e "vehicle-to-grid" (V2G). Il modello consente di definire, come sistema di dispacciamento centrale, le potenze che le varie risorse distribuite devono erogare o assorbire nella rete nelle 24 ore successive. Il dispacciamento avviene mediante risoluzione di un problema di minimizzazione dei costi operativi e dell'energia prelevata dalla rete esterna. Il problema è stato formulato tramite l'approccio di programmazione stocastica lineare dove i parametri incerti del modello sono modellizzati tramite processi stocastici. L'implementazione del modello è stata effettuata tramite il software AIMMS, un programma di ottimizzazione che prevede al suo interno delle funzionalità specifiche per la programmazione stocastica
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.
Resumo:
Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.
Resumo:
This paper focuses on computational models development and its applications on demand response, within smart grid scope. A prosumer model is presented and the corresponding economic dispatch problem solution is analyzed. The prosumer solar radiation production and energy consumption are forecasted by artificial neural networks. The existing demand response models are studied and a computational tool based on fuzzy clustering algorithm is developed and the results discussed. Consumer energy management applications within the InovGrid pilot project are presented. Computation systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters, allowing the incorporation of consumer actions on their electrical energy management. An energy management system with integration of smart meters for energy consumers in a smart grid is developed.
Resumo:
IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).
Resumo:
Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.
Resumo:
The aim of this work is to develop a Demand-Side-Response (DSR) model, which assists electricity end-users to be engaged in mitigating peak demands on the electricity network in Eastern and Southern Australia. The proposed innovative model will comprise a technical set-up of a programmable internet relay, a router, solid state switches in addition to the suitable software to control electricity demand at user's premises. The software on appropriate multimedia tool (CD Rom) will be curtailing/shifting electric loads to the most appropriate time of the day following the implemented economic model, which is designed to be maximizing financial benefits to electricity consumers. Additionally the model is targeting a national electrical load be spread-out evenly throughout the year in order to satisfy best economic performance for electricity generation, transmission and distribution. The model is applicable in region managed by the Australian Energy Management Operator (AEMO) covering states of Eastern-, Southern-Australia and Tasmania.
Resumo:
Transmission smart grids will use a digital platform for the automation of high voltage substations. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. A time synchronisation system is required for a sampled value process bus, however the details are not defined in IEC 61850-9-2. PTPv2 provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. The suitability of PTPv2 to synchronise sampling in a digital process bus is evaluated, with preliminary results indicating that steady state performance of low cost clocks is an acceptable ±300 ns, but that corrections issued by grandmaster clocks can introduce significant transients. Extremely stable grandmaster oscillators are required to ensure any corrections are sufficiently small that time synchronising performance is not degraded.