771 resultados para skull ontogeny
Resumo:
Formation of cartilage and bone involves sequential processes in which undifferentiated mesenchyme aggregates into primordial condensations which subsequently grow and differentiate, resulting in morphogenesis of the adult skeleton. While much has been learned about the structural molecules which comprise cartilage and bone, little is known about the nuclear factors which regulate chondrogenesis and osteogenesis. MHox is a homeobox-containing gene which is expressed in the mesenchyme of facial, limb, and vertebral skeletal precursors during mouse embryogenesis. MHox expression has been shown to require epithelial-derived signals, suggesting that MHox may regulate the epithelial-mesenchymal interactions required for skeletal organogenesis. To determine the functions of MHox, we generated a loss-of-function mutation in the MHox gene. Mice homozygous for a mutant MHox allele exhibit defects of skeletogenesis, involving the loss or malformation of craniofacial, limb and vertebral skeletal structures. The affected skeletal elements are derived from the cranial neural crest, as well as somitic and lateral mesoderm. Analysis of the mutant phenotype during ontogeny demonstrated a defect in the formation or growth of chondrogenic and osteogenic precursors. These findings provide evidence that MHox regulates the formation of preskeletal condensations from undifferentiated mesenchyme. In addition, generation of mice doubly mutant for the MHox and S8 homeobox genes reveal that these two genes interact to control formation of the limb and craniofacial skeleton. Mice carrying mutant alleles for S8 and MHox exhibit an exaggeration of the craniofacial and limb phenotypes observed in the MHox mutant mouse. Thus, MHox and S8 are components of a combinatorial genetic code controlling generation of the skeleton of the skull and limbs. ^
Resumo:
As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.
Resumo:
BACKGROUND Skull-base chondrosarcoma (ChSa) is a rare disease, and the prognostication of this disease entity is ill defined. METHODS We assessed the long-term local control (LC) results, overall survival (OS), and prognostic factors of skull-base ChSa patients treated with pencil beam scanning proton therapy (PBS PT). Seventy-seven (male, 35; 46%) patients with histologically confirmed ChSa were treated at the Paul Scherrer Institute. Median age was 38.9 years (range, 10.2-70.0y). Median delivered dose was 70.0 GyRBE (range, 64.0-76.0 GyRBE). LC, OS, and toxicity-free survival (TFS) rates were calculated using the Kaplan Meier method. RESULTS After a mean follow-up of 69.2 months (range, 4.6-190.8 mo), 6 local (7.8%) failures were observed, 2 of which were late failures. Five (6.5%) patients died. The actuarial 8-year LC and OS were 89.7% and 93.5%, respectively. Tumor volume > 25 cm(3) (P = .02), brainstem/optic apparatus compression at the time of PT (P = .04) and age >30 years (P = .08) were associated with lower rates of LC. High-grade (≥3) radiation-induced toxicity was observed in 6 (7.8%) patients. The 8-year high-grade TFS was 90.8%. A higher rate of high-grade toxicity was observed for older patients (P = .073), those with larger tumor volume (P = .069), and those treated with 5 weekly fractions (P = .069). CONCLUSIONS This is the largest PT series reporting the outcome of patients with low-grade ChSa of the skull base treated with PBS only. Our data indicate that protons are both safe and effective. Tumor volume, brainstem/optic apparatus compression, and age were prognosticators of local failures.
Resumo:
T cell development is a multistage process of differentiation that depends on proper thymocyte-thymic epithelial cell (TEC) interactions. Epithelial cells in the thymus are organized in a three-dimensional network that provides support and signals for thymocyte maturation. Concurrently, proper TEC differentiation in the adult thymus relies on thymocyte-derived signals. TECs produce interleukin-7 (IL-7), a non-redundant cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We have identified IL-7 expressing TECs throughout ontogeny and in the adult thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the thymic primordium by embryonic day 11.5, in a Foxn1 independent pathway. Marked changes occur in the localization and regulation of IL-7 expressing TECs during development. Whereas IL-7 expressing TECs are present throughout the early thymic rudiment, the majority of IL-7 producing TECs are concentrated in the adult thymic medulla. By analyzing mouse strains that sustain blocks at different stages of thymocyte development, we show that IL-7 expression is initiated independently of hematopoietic-derived signals during thymic organogenesis. However, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Furthermore, distinct thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium. Intraperitoneal injection of Recombination Activating Gene deficient mice (RAG-2−/−) with anti-CD3ϵ monoclonal antibody (mAb) induces CD4− 8− double negative thymocytes to undergo β-selection and differentiate into CD4+8+ cells. Analysis of the thymic stromal compartment reveals that progression through β-selection renders thymocytes competent to alter the pattern of IL-7 expression in the cortical TEC compartment. RAG-2−/− mice do not generate mature T cells and therefore the RAG-2−/− thymus is devoid of organized medullary regions. Histological examination of RAG-2−/− thymus following anti-CD3ϵ stimulation reveals the emergence of mature thymic medullary regions, as assessed by H & E staining and expression of thymic stromal medullary markers. Stromal medullary reorganization occurs in the absence of T cell receptor αβ expression, suggesting that activation of RAG-2−/− thymocytes by CD3ϵ ligation generates thymocyte-derived signals that induce thymic epithelial reorganization, generating a mature medullary compartment. This model provides a tool to assess the mechanisms underlying thymic medullary development. ^
Resumo:
2
Resumo:
1
Resumo:
Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet β cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific β cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.
Resumo:
Dendritic cells (DC) have been thought to represent a family of closely related cells with similar functions and developmental pathways. The best-characterized precursors are the epidermal Langerhans cells, which migrate to lymphoid organs and become activated DC in response to inflammatory stimuli. Here, we demonstrate that a large subset of DC in the T cell-dependent areas of human lymphoid organs are nonactivated cells and belong to a separate lineage that can be identified by high levels of the interleukin 3 receptor α chain (IL-3Rαhi). The CD34+IL-3Rαhi DC progenitors are of myeloid origin and are distinct from those that give rise to Langerhans cells in vitro. The IL-3Rαhi DC furthermore appear to migrate to lymphoid organs independently of inflammatory stimuli or foreign antigens. Thus, DC are heterogeneous with regard to function and ontogeny.
Bones of the Skull: A 3-D Learning Tool, QuickTime VR Anatomical Resources, and Yorick: The VR Skull
Resumo:
Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals.