976 resultados para simplex
Resumo:
Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.
Resumo:
The mechanisms responsible for cytokine-mediated antiviral effects are not fully understood. We approached this problem by studying the outcome of intraocular herpes simplex (HSV) infection in transgenic mice that express interferon gamma in the photoreceptor cells of the retina. These transgenic mice showed selective survival from lethal HSV-2 infection manifested in both eyes, the optic nerve, and the brain. Although transgenic mice developed greater inflammatory responses to the virus in the eyes, inflammation and viral titers in their brains were equivalent to nontransgenic mice. However, survival of transgenic mice correlated with markedly lower numbers of central neurons undergoing apoptosis. The protooncogene Bcl2 was found to be induced in the HSV-2-infected brains of transgenic mice, allowing us to speculate on its role in fostering neuronal survival in this model. These observations imply a complex interaction between cytokine, virus, and host cellular factors. Our results suggest a cytokine-regulated salvage pathway that allows for survival of infected neurons.
Resumo:
BACKGROUND Over 3500 HIV-positive women give birth annually in Ukraine, a setting with high prevalence of sexually transmitted infections. Herpes simplex virus Type 2 (HSV-2) co-infection may increase HIV mother-to-child transmission (MTCT) risk. We explored factors associated with HSV-2 seropositivity among HIV-positive women in Ukraine, and its impact on HIV MTCT. METHODS Data on 1513 HIV-positive women enrolled in the Ukraine European Collaborative Study from 2007 to 2012 were analysed. Poisson and logistic regression models respectively were fit to investigate factors associated with HSV-2 seropositivity and HIV MTCT. RESULTS Median maternal age was 27 years (IQR 24-31), 53% (796/1513) had been diagnosed with HIV during their most recent pregnancy and 20% had a history of injecting drugs. Median antenatal CD4 count was 430 cells/mm(3) (IQR 290-580). Ninety-six percent had received antiretroviral therapy antenatally. HSV-2 seroprevalence was 68% (1026/1513). In adjusted analyses, factors associated with HSV-2 antibodies were history of pregnancy termination (APR 1.30 (95% CI 1.18-1.43) for ≥ 2 vs. 0), having an HIV-positive partner (APR 1.15 (95% CI 1.05-1.26) vs partner's HIV status unknown) and HCV seropositivity (APR 1.23 (95 % CI 1.13-1.35)). The overall HIV MTCT rate was 2.80% (95% CI 1.98-3.84); no increased HIV MTCT risk was detected among HSV-2 seropositive women after adjusting for known risk factors (AOR 1.43 (95% CI 0.54-3.77). CONCLUSION No increased risk of HIV MTCT was detected among the 68% of HIV-positive women with antibodies to HSV-2, in this population with an overall HIV MTCT rate of 2.8%. Markers of ongoing sexual risk among HIV-positive HSV-2 seronegative women indicate the importance of interventions to prevent primary HSV-2 infection during pregnancy in this high-risk group.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographies.
Resumo:
"Contract no. AF 49(638)-700."
Resumo:
The relative stability and magnitude of genetic and environmental effects underlying major dimensions of adolescent personality across time were investigated. The Junior Eysenck Personality Questionnaire was administered to over 540 twin pairs at ages 12, 14 and 16 years. Their personality scores were analyzed using genetic simplex modeling which explicitly took into account the longitudinal nature of the data. With the exception of the dimension lie, multivariate model fitting results revealed that familial aggregation was entirely explained by additive genetic effects. Results from simplex model fitting suggest that large proportions of the additive genetic variance observed at ages 14 and 16 years could be explained by genetic effects present at the age of 12 years. There was also evidence for smaller but significant genetic innovations at 14 and 16 years of age for male and female neuroticism, at 14 years for male extraversion, at 14 and 16 years for female psychoticism, and at 14 years for male psychoticism.
Resumo:
Type 1 diabetes (TID) susceptibility locus, IDDM8, has been accurately mapped to 200 kilobases at the terminal end of chromosome 6q27. This is within the region which harbours a cluster of three genes encoding proteasome subunit beta 1 (PMSB1), TATA-box binding protein (TBP) and a homologue of mouse programming cell death activator 2 (PDCD2). In this study, we evaluated whether these genes contribute to TID susceptibility using the transmission disequilibrium test of the data set from 114 affected Russian simplex families. The A allele of the G/A1180 single nucleotide polymorphism (SNP) at the PDCD2 gene, which was significant in its preferential transfer from parents to diabetic children (75 transmissions vs. 47 non-transmissionS, x(2) = 12.85, P corrected = 0.0038), was found to be associated with T1D. G/A1180 dimorphism and two other SNPs, C/T771 TBP and G/T(-271) PDCD2, were shown to share three common haplotypes, two of which (A-T-G and A-T-T) have been associated with higher development risk of TID. The third haplotype (G-T-G) was related to having a lower risk of disease. These findings suggest that the PDCD2 gene is a likely susceptibility gene for TID within IDDM8. However, it was not possible to exclude the TBP gene from being another putative susceptibility gene in this region. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background. Genital ulcer disease (GUD) is commonly caused by pathogens for which suitable therapies exist, but clinical and laboratory diagnoses may be problematic. This collaborative project was undertaken to address the need for a rapid, economical, and sensitive approach to the detection and diagnosis of GUD using noninvasive techniques to sample genital ulcers. Methods. The genital ulcer disease multiplex polymerase chain reaction (GUMP) was developed as an inhouse nucleic acid amplification technique targeting serious causes of GUD, namely, herpes simplex viruses (HSVs), Haemophilus ducreyi, Treponema pallidum, and Klebsiella species. In addition, the GUMP assay included an endogenous internal control. Amplification products from GUMP were detected by enzyme linked amplicon hybridization assay (ELAHA). Results. GUMP-ELAHA was sensitive and specific in detecting a target microbe in 34.3% of specimens, including 1 detection of HSV-1, three detections of HSV-2, and 18 detections of T. pallidum. No H. ducreyi has been detected in Australia since 1998, and none was detected here. No Calymmatobacterium ( Klebsiella) granulomatis was detected in the study, but there were 3 detections during ongoing diagnostic use of GUMP-ELAHA in 2004 and 2005. The presence of C. granulomatis was confirmed by restriction enzyme digestion and nucleotide sequencing of the 16S rRNA gene for phylogenetic analysis. Conclusions. GUMP-ELAHA permitted comprehensive detection of common and rare causes of GUD and incorporated noninvasive sampling techniques. Data obtained by using GUMP-ELAHA will aid specific treatment of GUD and better define the prevalence of each microbe among at-risk populations with a view to the eradication of chancroid and donovanosis in Australia.
Resumo:
At present there is not a reliable vaccine against herpes virus. Viral protein vaccines as yet have proved unsuccessful to meet the challenge of raising an appropriate immune response. Cantab Pharmaceuticals has produced a virus vaccine that can undergo one round of replication in the recipient in order to produce a more specific immune reaction. This virus is called Disabled Infectious Single Cycle Herpes Simplex Virus (DISC HSV) which has been derived by deleting the essential gH gene from a type 2 herpes virus. This vaccine has been proven to be effective in animal studies. Existing methods for the purification of viruses rely on laboratory techniques and for vaccine production would be on a far too small a scale. There is therefore a need for new virus purification methods to be developed in order to meet these large scale needs. An integrated process for the manufacture of a purified recombinant DISC HSV is described. The process involves culture of complementing Vero (CR2) cells, virus infection and manufacture, virus harvesting and subsequent downstream processing. The identification of suitable growth parameters for the complementing cell line and optimal limes for both infection and harvest are addressed. Various traditional harvest methods were investigated and found not to be suitable for a scaled up process. A method of harvesting, that exploits the elution of cell associated viruses by the competitive binding of exogenous heparin to virus envelope gC proteins, is described and is shown to yield significantly less contaminated process streams than sonication or osmotic approaches that involve cell rupture (with> 10-fold less complementing cell protein). High concentrations of salt (>0.8M NaCl) exhibit the same effect, although the high osmotic strength ruptures cells and increase the contamination of the process stream. This same heparin-gC protein affinity interaction is also shown to provide an efficient adsorptive purification procedure for herpes viruses which avoids the need to pre-treat the harvest material, apart from clarification, prior to chromatography. Subsequent column eluates provide product fractions with a 100-fold increase in virus titre and low levels of complementing cell protein and DNA (0.05 pg protein/pfu and 1.2 x 104 pg DNA/pfu respectively).
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.