958 resultados para sensible and latent heat fluxes
Resumo:
Polar lows are maritime meso-cyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the ERA-Interim (ERAI) reanalysis to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008-2011. First, the representation of a set of satellite observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analysed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850 hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite observed polar lows with a lifetime of at least 6 hours have an 850 hPa vorticity signature of a co-located mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implications of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.
Resumo:
Chongqing is the largest directly-controlled municipality in China, which is now undergoing a rapid urbanization. The urbanization rate increased from 35.6% in 2000 to 48.3% in 2007, and it is estimated to reach at least 70% by 2020. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimate? Furthermore, Chongqing is located within the Three Gorges Reservoir (TGR) region and the upper Yangtze River, where the Three Gorges Reservoir (TGR) project started in 1993 and was completed in 2010. As one of the biggest construction projects in the world with a rising water level of 175m and water storage capacity of about 39.3 billion m3, it would be interesting to investigate how such a gigantic project impacts the surrounding micro-environment, especially in Chongqing. Different research approaches are adopted in the study. Our literature review indicates present studies on the urban climate in Chongqing are mainly confined within the historical trend analysis of several weather stations operated by the Chongqing government, little is known about the spatial distribution of urban air temperature and how the local land cover influences the air temperature, especially when there are rivers running through the Chongqing urban area. To contribute to the present knowledge, a series of field measurement campaigns and numerical simulations were carried out. Two complementary types of field measurements are included: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.
Resumo:
We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.
Resumo:
Endogenous oxidative stress is a likely cause of cardiac myocyte death in vivo. We examined the early (0-2 h) changes in the proteome of isolated cardiac myocytes from neonatal rats exposed to H2O2 (0.1 mM), focussing on proteins with apparent molecular masses of between 20 and 30 kDa. Proteins were separated by two-dimensional gel electrophoresis (2DGE), located by silver-staining and identified by mass spectrometry. Incorporation of [35S]methionine or 32Pi was also studied. For selected proteins, transcript abundance was examined by reverse transcriptase-polymerase chain reaction. Of the 38 protein spots in the region, 23 were identified. Two families showed changes in 2DGE migration or abundance with H2O2 treatment: the peroxiredoxins and two small heat shock protein (Hsp) family members: heat shock 27 kDa protein 1 (Hsp25) and alphaB-crystallin. Peroxiredoxins shifted to lower pI values and this was probably attributable to 'over-oxidation' of active site Cys-residues. Hsp25 also shifted to lower pI values but this was attributable to phosphorylation. alphaB-crystallin migration was unchanged but its abundance decreased. Transcripts encoding peroxiredoxins 2 and 5 increased significantly. In addition, 10 further proteins were identified. For two (glutathione S-transferase pi, translationally-controlled tumour protein), we could not find any previous references indicating their occurrence in cardiac myocytes. We conclude that exposure of cardiac myocytes to oxidative stress causes post-translational modification in two protein families involved in cytoprotection. These changes may be potentially useful diagnostically. In the short term, oxidative stress causes few detectable changes in global protein abundance as assessed by silver-staining.
Resumo:
The interaction between polynyas and the atmospheric boundary layer is examined in the Laptev Sea using the regional, non-hydrostatic Consortium for Small-scale Modelling (COSMO) atmosphere model. A thermodynamic sea-ice model is used to consider the response of sea-ice surface temperature to idealized atmospheric forcing. The idealized regimes represent atmospheric conditions that are typical for the Laptev Sea region. Cold wintertime conditions are investigated with sea-ice–ocean temperature differences of up to 40 K. The Laptev Sea flaw polynyas strongly modify the atmospheric boundary layer. Convectively mixed layers reach heights of up to 1200 m above the polynyas with temperature anomalies of more than 5 K. Horizontal transport of heat expands to areas more than 500 km downstream of the polynyas. Strong wind regimes lead to a more shallow mixed layer with strong near-surface modifications, while weaker wind regimes show a deeper, well-mixed convective boundary layer. Shallow mesoscale circulations occur in the vicinity of ice-free and thin-ice covered polynyas. They are forced by large turbulent and radiative heat fluxes from the surface of up to 789 W m−2, strong low-level thermally induced convergence and cold air flow from the orographic structure of the Taimyr Peninsula in the western Laptev Sea region. Based on the surface energy balance we derive potential sea-ice production rates between 8 and 25 cm d−1. These production rates are mainly determined by whether the polynyas are ice-free or covered by thin ice and by the wind strength.
Resumo:
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source 4 population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to nonacclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.
Resumo:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
Increasing energy use has caused many environmental problems including global warming. Energy use is growing rapidly in developing countries and surprisingly a remarkable portion of it is associated with consumed energy to keep the temperature comfortable inside the buildings. Therefore, identifying renewable technologies for cooling and heating is essential. This study introduced applications of steel sheets integrated into the buildings to save energy based on existing technologies. In addition, the proposed application was found to have a considerable chance of market success. Also, satisfying energy needs for space heating and cooling in a single room by using one of the selected applications in different Köppen climate classes was investigated to estimate which climates have a proper potential for benefiting from the application. This study included three independent parts and the results related to each part have been used in the next part. The first part recognizes six different technologies through literature review including Cool Roof, Solar Chimney, Steel Cladding of Building, Night Radiative Cooling, Elastomer Metal Absorber, and Solar Distillation. The second part evaluated the application of different technologies by gathering the experts’ ideas via performing a Delphi method. The results showed that the Solar Chimney has a proper chance for the market. The third part simulated both a solar chimney and a solar chimney with evaporation which were connected to a single well insulated room with a considerable thermal mass. The combination was simulated as a system to estimate the possibility of satisfying cooling needs and heating needs in different climate classes. A Trombe-wall was selected as a sample design for the Solar Chimney and was simulated in different climates. The results implied that the solar chimney had the capability of reducing the cooling needs more than 25% in all of the studied locations and 100% in some locations with dry or temperate climate such as Mashhad, Madrid, and Istanbul. It was also observed that the heating needs were satisfied more than 50% in all of the studied locations, even for the continental climate such as Stockholm and 100% in most locations with a dry climate. Therefore, the Solar Chimney reduces energy use, saves environment resources, and it is a cost effective application. Furthermore, it saves the equipment costs in many locations. All the results mentioned above make the solar chimney a very practical and attractive tool for a wide range of climates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stress response is a universal mechanism developed by all organisms to deal with adverse changes in the environment, which lead to the synthesis of heat shock proteins (Hsps). In this study, the effect of moderate (41degreesC) and severe (44degreesC) heat stress on Hsp70 transcript expression pattern was investigated during chicken embryogenesis. Acute exposure to severe heat stress for one hour resulted in a fifteen-fold increase in Hsp70 mRNA levels. The return of stressed embryos to normal incubation temperature resulted in Hsp70 mRNA levels five-fold higher than control after three hours and normal levels after six hours. Moderate heat stress did not induce enhancements on Hsp70 mRNA levels. The spatial expression of Hsp70 transcripts was detected in embryos under normal incubation conditions. Whole-mount in situ hybridization analysis showed that Hsp70 transcripts were constitutively present in somite and in distinct encephalic domains (predominantly in prosencephalon and mesencephalon areas) of the chicken embryo. These results showed that Hsp70 induction is dependent on incubation temperature conditions, suggesting that early chicken embryos may induce a quick emergence response to cope with severe heat stress by increasing Hsp70 mRNA levels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated.2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii.3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h.4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals.
Resumo:
The thermal properties of plums (Prunus domestica) and prunes were investigated in the moisture content of 14.2-80.4% (wet basis) near room temperature (approximately 28 degrees C). The apparent density of the fruits increased from 1042.9 to 1460.0 kg/m(3), and the bulk density increased from 706.6 to 897.5 kg/m(3) as the plums were dried, following classical empirical models as a function of moisture content. It was found that specific heat, effective thermal diffusivity, and effective thermal conductivity of the prunes increased with the moisture content of the samples, which can be represented by using different empirical models.
Resumo:
Background: the purpose this study was to investigate the relationship of anti-myosin and anti-heat shock protein immunoglobulin G (IgG) serum antibodies to the original heart disease of cardiac transplant recipients, and also to rejection and patient survival after cardiac transplantation.Methods: Anti-myosin and anti-heat shock protein (anti-hsp) IgG antibodies were evaluated in pre-transplant sera from 41 adult cardiac allograft recipients and in sequential post-transplant serum samples from 11 recipients, collected at the time of routine endomyocardial biopsies during the first 6 months after transplantation. In addition, the levels of these antibodies were determined from the sera of 28 healthy blood donors.Results: Higher anti-myosin antibody levels were observed in pre-transplant sera than in sera from normal controls. Moreover, patients with chronic Chagas heart disease showed higher anti-myosin levels than patients with ischemic heart disease, and also higher levels, although not statistically significant, than patients with dilated cardiomyopathy. Higher anti-hsp levels were also observed in patients compared with healthy controls, but no significant differences were detected among,the different types of heart diseases. Higher pre-transplant anti-myosin, but not anti-hsp, levels were associated with lower 2-year post-transplant survival. In the post-transplant period, higher anti-myosin IgG levels were detected in sera collected during acute rejection than in sera collected during the rejection-free period, whereas anti-hsp IgG levels showed no difference between these periods.Conclusions: the present findings are of interest for post-transplant management and, in addition, suggest a pathogenic role for anti-myosin antibodies in cardiac transplant rejection, as has been proposed in experimental models of cardiac transplantation.