778 resultados para self-learning algorithm
Resumo:
This study examines the structure of the Russian Reflexive Marker ( ся/-сь) and offers a usage-based model building on Construction Grammar and a probabilistic view of linguistic structure. Traditionally, reflexive verbs are accounted for relative to non-reflexive verbs. These accounts assume that linguistic structures emerge as pairs. Furthermore, these accounts assume directionality where the semantics and structure of a reflexive verb can be derived from the non-reflexive verb. However, this directionality does not necessarily hold diachronically. Additionally, the semantics and the patterns associated with a particular reflexive verb are not always shared with the non-reflexive verb. Thus, a model is proposed that can accommodate the traditional pairs as well as for the possible deviations without postulating different systems. A random sample of 2000 instances marked with the Reflexive Marker was extracted from the Russian National Corpus and the sample used in this study contains 819 unique reflexive verbs. This study moves away from the traditional pair account and introduces the concept of Neighbor Verb. A neighbor verb exists for a reflexive verb if they share the same phonological form excluding the Reflexive Marker. It is claimed here that the Reflexive Marker constitutes a system in Russian and the relation between the reflexive and neighbor verbs constitutes a cross-paradigmatic relation. Furthermore, the relation between the reflexive and the neighbor verb is argued to be of symbolic connectivity rather than directionality. Effectively, the relation holding between particular instantiations can vary. The theoretical basis of the present study builds on this assumption. Several new variables are examined in order to systematically model variability of this symbolic connectivity, specifically the degree and strength of connectivity between items. In usage-based models, the lexicon does not constitute an unstructured list of items. Instead, items are assumed to be interconnected in a network. This interconnectedness is defined as Neighborhood in this study. Additionally, each verb carves its own niche within the Neighborhood and this interconnectedness is modeled through rhyme verbs constituting the degree of connectivity of a particular verb in the lexicon. The second component of the degree of connectivity concerns the status of a particular verb relative to its rhyme verbs. The connectivity within the neighborhood of a particular verb varies and this variability is quantified by using the Levenshtein distance. The second property of the lexical network is the strength of connectivity between items. Frequency of use has been one of the primary variables in functional linguistics used to probe this. In addition, a new variable called Constructional Entropy is introduced in this study building on information theory. It is a quantification of the amount of information carried by a particular reflexive verb in one or more argument constructions. The results of the lexical connectivity indicate that the reflexive verbs have statistically greater neighborhood distances than the neighbor verbs. This distributional property can be used to motivate the traditional observation that the reflexive verbs tend to have idiosyncratic properties. A set of argument constructions, generalizations over usage patterns, are proposed for the reflexive verbs in this study. In addition to the variables associated with the lexical connectivity, a number of variables proposed in the literature are explored and used as predictors in the model. The second part of this study introduces the use of a machine learning algorithm called Random Forests. The performance of the model indicates that it is capable, up to a degree, of disambiguating the proposed argument construction types of the Russian Reflexive Marker. Additionally, a global ranking of the predictors used in the model is offered. Finally, most construction grammars assume that argument construction form a network structure. A new method is proposed that establishes generalization over the argument constructions referred to as Linking Construction. In sum, this study explores the structural properties of the Russian Reflexive Marker and a new model is set forth that can accommodate both the traditional pairs and potential deviations from it in a principled manner.
Resumo:
A new area of machine learning research called deep learning, has moved machine learning closer to one of its original goals: artificial intelligence and general learning algorithm. The key idea is to pretrain models in completely unsupervised way and finally they can be fine-tuned for the task at hand using supervised learning. In this thesis, a general introduction to deep learning models and algorithms are given and these methods are applied to facial keypoints detection. The task is to predict the positions of 15 keypoints on grayscale face images. Each predicted keypoint is specified by an (x,y) real-valued pair in the space of pixel indices. In experiments, we pretrained deep belief networks (DBN) and finally performed a discriminative fine-tuning. We varied the depth and size of an architecture. We tested both deterministic and sampled hidden activations and the effect of additional unlabeled data on pretraining. The experimental results show that our model provides better results than publicly available benchmarks for the dataset.
Resumo:
Ce rapport de recherche porte sur une étude s’intéressant au transfert des connaissances tacites chez les gestionnaires, c’est-à-dire le partage de ces connaissances et leur utilisation informelle, durant une situation de coordination dans un service municipal. La thèse est articulée autour des questions suivantes : Quelles sont les situations de coordination vécues par les gestionnaires municipaux? Quelles sont les sources de connaissances tacites partagées et utilisées? Quelles sont les relations de connaissances mobilisées de façon informelle lors du transfert des connaissances tacites? Quels sont les facteurs encourageant ou inhibant le transfert informel des connaissances tacites? À partir d’un modèle basé sur une approche situationnelle (Taylor, 1989 et 1991), nous avons revu la documentation touchant nos questions de recherche. Nous avons défini notamment la récursivité des connaissances et le réseau de connaissances, de même que présenté le modèle de la conversion des connaissances (Nonaka, 1994) et celui de l’actualisation de soi (St-Arnaud, 1996). Nous avons questionné 22 répondants à l’aide d’instruments de mesure qui combinent les techniques de l’incident critique, de l’entrevue cognitive et réflexive, le questionnement sur les réseaux organisationnels et l’observation participante. Tels des filets, ces instruments ont permis de traquer et d’obtenir des données d’une grande richesse sur les connaissances tacites et les comportements informels durant le transfert de connaissances en situation de coordination. Ces données ont été analysées selon une approche méthodologique essentiellement qualitative combinant l’analyse de contenu, la schématisation heuristique et l’analyse des réseaux sociaux. Nos résultats montrent que la complexité d’une situation de coordination conditionne le choix des mécanismes de coordination. De plus, les sources de connaissances sont, du point de vue individuel, le gestionnaire et ses artefacts, de même que son réseau personnel avec ses propres artefacts. Du point de vue collectif, ces sources sont réifiées dans le réseau de connaissances. Les connaissances clés d’une situation de coordination sont celles sur le réseau organisationnel, le contexte, les expériences en gestion et en situation complexe de coordination, la capacité de communiquer, de négocier, d’innover et celle d’attirer l’attention. Individuellement, les gestionnaires privilégient l’actualisation de soi, l’autoformation et la formation contextualisée et, collectivement, la coprésence dans l’action, le réseautage et l’accompagnement. Cette étude fournit un modèle valide du transfert contextualisé des connaissances qui est un cas de coordination complexe d’activités en gestion des connaissances. Ce transfert est concomitant à d’autres situations de coordination. La nature tacite des connaissances prévaut, de même que le mode informel, les médias personnels et les mécanismes d’ajustement mutuel. Les connaissances tacites sont principalement transférées au début des processus de gestion de projet et continuellement durant la rétroaction et le suivi des résultats. Quant aux connaissances explicites, les gestionnaires les utilisent principalement comme un symbole à la fin des processus de gestion de projet. Parmi les personnes et les groupes de personnes d’une situation de transfert contextualisé des connaissances, 10 % jouent des rôles clés, soit ceux d’experts et d’intermédiaires de personnes et d’artefacts. Les personnes en périphérie possèdent un potentiel de structuration, c’est-à-dire de connexité, pour assurer la continuité du réseau de connaissances organisationnel. Notre étude a élargi le modèle général de la complexité d’une situation (Bystrom, 1999; Choo, 2006; Taylor, 1986 et 1991), la théorie de la coordination (Malone et Crowston, 1994), le modèle de la conversion des connaissances (Nonaka, 1994), celui de l’actualisation de soi (St-Arnaud, 1996) et la théorie des réseaux de connaissances (Monge et Contractor, 2003). Notre modèle réaffirme la concomitance de ces modèles généraux selon une approche constructiviste (Giddens, 1987) où la dualité du structurel et la compétence des acteurs sont confirmées et enrichies.
Resumo:
Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.
Resumo:
Ce papier utilise les réseaux de neurones avec un algorithme incrémental comme outil de sélection des facteurs de risques les plus pertinents dans la maladie du cancer du sein. Les résultats témoignent de la pertinence de l’approche neuronale avec un algorithme incrémentale dans ce domaine de recherche. A partir d’un échantillon de 248 patientes atteintes par cette maladie, il nous a été possible de déterminer la combinaison optimale des facteurs permettant d’atteindre une bonne performance prédictive du type de tumeur maligne et bénigne.
Resumo:
Grâce à leur flexibilité et à leur facilité d’installation, les réseaux maillés sans fil (WMNs) permettent un déploiement d’une infrastructure à faible coût. Ces réseaux étendent la couverture des réseaux filaires permettant, ainsi, une connexion n’importe quand et n’importe où. Toutefois, leur performance est dégradée par les interférences et la congestion. Ces derniers causent des pertes de paquets et une augmentation du délai de transmission d’une façon drastique. Dans cette thèse, nous nous intéressons au routage adaptatif et à la stabilité dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la conception d’une métrique de routage et à la sélection des passerelles permettant d’améliorer la performance des WMNs. Dans ce contexte nous proposons un protocole de routage à la source basé sur une nouvelle métrique. Cette métrique permet non seulement de capturer certaines caractéristiques des liens tels que les interférences inter-flux et intra-flux, le taux de perte des paquets mais également la surcharge des passerelles. Les résultats numériques montrent que la performance de cette métrique est meilleure que celle des solutions proposées dans la littérature. Dans une deuxième partie de la thèse, nous nous intéressons à certaines zones critiques dans les WMNs. Ces zones se trouvent autour des passerelles qui connaissent une concentration plus élevé du trafic ; elles risquent de provoquer des interférences et des congestions. À cet égard, nous proposons un protocole de routage proactif et adaptatif basé sur l’apprentissage par renforcement et qui pénalise les liens de mauvaise qualité lorsqu’on s’approche des passerelles. Un chemin dont la qualité des liens autour d’une passerelle est meilleure sera plus favorisé que les autres chemins de moindre qualité. Nous utilisons l’algorithme de Q-learning pour mettre à jour dynamiquement les coûts des chemins, sélectionner les prochains nœuds pour faire suivre les paquets vers les passerelles choisies et explorer d’autres nœuds voisins. Les résultats numériques montrent que notre protocole distribué, présente de meilleurs résultats comparativement aux protocoles présentés dans la littérature. Dans une troisième partie de cette thèse, nous nous intéressons aux problèmes d’instabilité des réseaux maillés sans fil. En effet, l’instabilité se produit à cause des changements fréquents des routes qui sont causés par les variations instantanées des qualités des liens dues à la présence des interférences et de la congestion. Ainsi, après une analyse de l’instabilité, nous proposons d’utiliser le nombre de variations des chemins dans une table de routage comme indicateur de perturbation des réseaux et nous utilisons la fonction d’entropie, connue dans les mesures de l’incertitude et du désordre des systèmes, pour sélectionner les routes stables. Les résultats numériques montrent de meilleures performances de notre protocole en comparaison avec d’autres protocoles dans la littérature en termes de débit, délai, taux de perte des paquets et l’indice de Gini.
Resumo:
The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate.
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
Cette thèse en électronique moléculaire porte essentiellement sur le développement d’une méthode pour le calcul de la transmission de dispositifs électroniques moléculaires (DEMs), c’est-à-dire des molécules branchées à des contacts qui forment un dispositif électronique de taille moléculaire. D’une part, la méthode développée vise à apporter un point de vue différent de celui provenant des méthodes déjà existantes pour ce type de calculs. D’autre part, elle permet d’intégrer de manière rigoureuse des outils théoriques déjà développés dans le but d’augmenter la qualité des calculs. Les exemples simples présentés dans ce travail permettent de mettre en lumière certains phénomènes, tel que l’interférence destructive dans les dispositifs électroniques moléculaires. Les chapitres proviennent d’articles publiés dans la littérature. Au chapitre 2, nous étudions à l’aide d’un modèle fini avec la méthode de la théorie de la fonctionnelle de la densité de Kohn-Sham un point quantique moléculaire. De plus, nous calculons la conductance du point quantique moléculaire avec une implémentation de la formule de Landauer. Nous trouvons que la structure électronique et la conductance moléculaire dépendent fortement de la fonctionnelle d’échange et de corrélation employée. Au chapitre 3, nous discutons de l’effet de l’ajout d’une chaîne ramifiée à des molécules conductrices sur la probabilité de transmission de dispositifs électroniques moléculaires. Nous trouvons que des interférences destructives apparaissent aux valeurs propres de l’énergie des chaînes ramifiées isolées, si ces valeurs ne correspondent pas à des états localisés éloignés du conducteur moléculaire. Au chapitre 4, nous montrons que les dispositifs électroniques moléculaires contenant une molécule aromatique présentent généralement des courants circulaires qui sont associés aux phénomènes d’interférence destructive dans ces systèmes. Au chapitre 5, nous employons l’approche « source-sink potential » (SSP) pour étudier la transmission de dispositifs électroniques moléculaires. Au lieu de considérer les potentiels de sources et de drains exactement, nous utilisons la théorie des perturbations pour trouver une expression de la probabilité de transmission, T(E) = 1 − |r(E)|2, où r(E) est le coefficient de réflexion qui dépend de l’énergie. Cette expression dépend des propriétés de la molécule isolée, en effet nous montrons que c’est la densité orbitalaire sur les atomes de la molécule qui sont connectés aux contacts qui détermine principalement la transmission du dispositif à une énergie de l’électron incident donnée. Au chapitre 6, nous présentons une extension de l’approche SSP à un canal pour des dispositifs électroniques moléculaires à plusieurs canaux. La méthode à multiples canaux proposée repose sur une description des canaux propres des états conducteurs du dispositif électronique moléculaire (DEM) qui sont obtenus par un algorithme auto-cohérent. Finalement, nous utilisons le modèle développé afin d’étudier la transmission du 1-phényl-1,3-butadiène branché à deux rangées d’atomes couplées agissant comme contacts à gauche et à la droite.
Resumo:
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.