911 resultados para salivary secretion
Identification of a secretion signal for the type II protein secretion pathway in Erwinia carotovora
Hormonal modulation of riboflavin carrier protein secretion by immature rat Sertoli cells in culture
Resumo:
We report here that a protein species with biochemical and immunological similarity with chicken egg riboflavin carrier protein (RCP) is synthesized and secreted by immature rat Sertoli cells in culture. When quantitated by a specific heterologous radioimmunoassay, optimal concentrations of FSH (25 ng/ml) brought about 3-fold stimulation of RCP secretion. FSH, in the presence of testosterone (10−6 M) brought about 6-fold stimulation of secretion of RCP over the control cultures which were maintained in the absence of these two factors. The aromatase inhibitor (1,4,6-androstatrien-3,17-dione) curtailed 85% of the enhanced secretion of RCP, suggesting that the hormonal stimulation is mediated through in situ synthesized estrogen and this could be confirmed with exogenous estradiol-17 β which brought about 3 — fold enhancement of secretion of RCP at a concentration of 10−6 M. When tamoxifen (10 μM) was added along with FSH and testosterone, there was 75% decrease in the enhanced secretion of RCP. Addition of this anti-estrogen together with exogenous estradiol resulted in 55% decrease in elevated levels of RCP. Cholera toxin (1 μg/ml) and 8-bromo-cyclic AMP (0.5 mM) mimicked the action of FSH on the secretion of RCP thus suggesting that FSH stimulation of RCP production may be mediated through cyclic AMP. These findings suggest that estrogen mediates RCP induction in hormonally stimulated sertoli cells presumably to function as the carrier of riboflavin to the developing germ cells through blood-testis barrier in rodents.
Resumo:
The type III secretion system (T3SS) is an essential requirement for the virulence of many Gram-negative bacteria which infect plants, animals and men. Pathogens use the T3SS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cells, where the effectors subvert host defenses. The best candidates for directing effector protein traffic are the bacterial type III-associated appendages, called needles or pili. In plant pathogenic bacteria, the best characterized example of a T3SS-associated appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into extracellular space, and avirulence (Avr) proteins such as AvrPto which are translocated directly to the plant cytoplasm. This study deals with the structural and functional characterization of the T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a carrier of antigenic determinants for vaccination. By pulse-expression of proteins combined with immuno-electron microscopy, we discovered the Hrp pilus assembly strategy as addition of HrpA subunits to the distal end of the growing pilus, and we showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus thus functions as a conduit delivering proteins to the extracellular milieu. By using phage-display and scanning-insertion mutagenesis methods we identified a conserved HrpZ-binding peptide and localized the peptide-binding site to the central domain of HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. Taken together, the current results provide deeper insight into the molecular mechanism of T3SS-associated pilus assembly and effector protein translocation, which will be helpful for further studies on the pathogenic mechanisms of Gram-negative bacteria and for developing new strategies to prevent bacterial infection.
Resumo:
The purpose of this work was to elucidate the ontogeny of interleukin-10 (IL-10) secretion from newborn mononuclear cells (MCs), and to examine its relation to the secretion of interferon-g (IFN-g) and immunoglobulins (Igs). The initial hypothesis was that the decreased immunoglobulin (Ig) synthesis of newborn babies was the result of immature cytokine synthesis regulation, which would lead to excessive IL-10 production, leading in turn to suppressed IFN-g secretion. Altogether 57 full-term newborns and 34 adult volunteers were enrolled. Additionally, surface marker compositions of 29 premature babies were included. Enzyme-linked immunoassays were used to determine the amount of secreted IL-10, IFN-g, and Igs, and the surface marker composition of MC were analyzed with a FACScan flow cytometer. The three most important findings were: 1. Cord blood MC, including CD5+ B cells, are able to secrete IL-10. However, when compared with adults, the secretion of IL-10 was decreased. This indicates that reasons other than excessive IL-10 secretion are responsible of reduced IFN-g secretion in newborns. 2. As illustrated by the IL-10 and IFN-g secretion pattern, newborn cytokine profile was skewed towards the Th2 type. However, approximately 25% of newborns had an adult like cytokine profile with both good IL10 and IFN-g secretion, demonstrating that fullterm newborns are not an immunologically homogenous group at the time of birth. 3. There were significant differences in the surface marker composition of MCs between individual neonates. While gestational age correlated with the proportion of some MC types, it is evident that there are many other maternal and fetal factors that influence the maturity and nature of lymphocyte subpopulations in individual neonates. In conclusion, the reduced ability of neonates to secrete Ig and IFN-g is not a consequence of high IL-10 secretion. However, individual newborns differ significantly in their ability to secrete cytokines as well as Igs.
Resumo:
Sjögren s syndrome (SS) is a strongly female dominant autoimmune disease. SS targets mainly salivary and lacrimal glands and leads to loss of the secreting acinar cells of these glands. Accordingly, secretion of the affected glands is diminished and the main symptoms of SS, dryness of mouth and eyes, follow. In addition to these sicca symptoms, SS patients suffer from severe fatigue and can have various extraglandular symptoms. To date, the etiology of SS still remains unknown. Female dominance and the late onset of the disease simultaneously with remarkable hormonal changes in the body (menopause, adrenopause) encouraged us to hypothesize that sex steroids, especially androgens, are involved in the onset and progression of SS. We confirmed our hypothesis and showed that patients with SS suffer from androgen depletion both systemically and locally in the target tissue of SS, salivary glands. We especially focused on the local androgen environment in salivary glands and demonstrated that healthy salivary glands contain a complete enzymatic machinery for local synthesis of androgens and estrogens from pro-hormone dehydroepiandrosterone (DHEA). However, in SS salivary glands the enzymes catalyzing the local androgen synthesis are defective and, in a subgroup of patients, practically non-functional. Probably due to this local defect in DHEA processing, therapy with DHEA was found unbeneficial for SS patients in the treatment of fatigue. We also studied the effect of the local androgen depletion on salivary glands. We found that in salivary gland cells and healthy labial salivary glands androgens upregulate integrin subunits α1 and α2, which are important for the communication, differentiation and function of the acinar cells. On the contrary, in SS salivary glands DHEA failed to upregulate these signaling molecules, again probably due to defective processing of DHEA into active androgens. Our finding highlights the importance of the local androgen environment and local DHEA processing for the function and welfare of salivary glands. In conclusion, this study showed that patients with SS are androgen depleted both systemically and locally in salivary glands. SS patients also have a defective local sex steroid synthesizing enzymatic machinery further impairing the local androgen depletion. We also showed that the local androgen defect leads to decreased expression of acinar cell specific integrin molecules, which impairs the signaling between the acinar cells and basement membrane and might thus explain the acinar cell loss seen in SS salivary glands. By showing the importance of the local sex steroid imbalance in SS we have clarified some etiopathogenetic mechanisms of SS, which have thus far remained unknown.
Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7)
Resumo:
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.
Resumo:
In vitro studies using first-trimester human placental minces have shown that stimulation of human chorionic gonadotrophin (hCG) secretion by gonadotrophin-releasing hormone (GnRH) is dependent upon the presence of extracellular calcium. Addition of GnRH to first-trimester placental minces in vitro was found to stimulate 45Ca2+ uptake into placental minces, and the process was associated with an increase in immunoreactive hCG in the medium. Addition of GnRH to placental minces preloaded with 45Ca2+ stimulated the efflux of 45Ca2+ within one minute. The calmodulin inhibitors chlorpromazine andtrifluoperazine inhibited the basal uptake and efflux of 45Ca2+ suggesting the involvement of calmodulin in the mobilization of calcium in the placenta.
Resumo:
Depletion of calcium in the extracellular medium used to incubate first trimester human placental minces resulted in a significant decrease in the quantity of immuno-reactive hCG in the medium and a corresponding increase in the tissue. In contrast, when secretion of newly synthesised hCG was monitored in the absence of calcium by using a radioactive amino acid precursor, a significant increase in the secretion of newly synthesised hCG in the medium was noticed. This was true of secretion of other proteins also as evidenced by the increase in the trichloroacetic acid precipitable radioactivity in the medium in the absence of calcium. These results suggest that newly synthesised hCG is preferentially released over stored hormone in the absence of calcium.
Resumo:
The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle.
Resumo:
Inhibition of aromatase, a key enzyme in the biosynthesis of oestradiol-17 beta, by the addition of 1,4,6-androstatrien-3,17-dione resulted in a significant increase in the levels of immunoreactive human chorionic gonadotrophin (hCG) in the medium and tissue. This increase was partially reversed by the simultaneous addition of oestradiol-17 beta. These effects on the levels of immunoreactive hCG were also reflected by the increased levels of mRNA specific for the alpha and beta subunits of hCG following the addition of the aromatase inhibitor. However, addition of tamoxifen resulted in a drastic decrease in the levels of both the messages. Based on these results, it is suggested that the synthesis of hCG is negatively modulated by oestradiol-17 beta in the human placenta.
Resumo:
Chorionic gonadotrophin (CG) is the first clear embryonic signal during early pregnancy in primates. CG has close structural and functional similarities to pituitary luteinizing hormone (LH) which is regulated by gonadotrophin releasing hormone (GnRH). To study the regulatory mechanism of CG secretion in primate embryos, we examined the production and timing of secretion of GnRH in peri-implantation embryos of the rhesus monkey. In-vivo fertilized/developed morulae and early blastocysts, recovered from non-superovulated, naturally-bred rhesus monkeys by non-surgical uterine flushing, were cultured in vitro to hatched, attached and post-attached blastocyst stages using a well-established culture system. We measured GnRH and CG in media samples from cultured embryos with a sensitive radioimmunoassay and bioassay, respectively. The secretion of GnRH (pg/ml; mean +/- SEM) by embryos (n = 20) commenced from low levels (0.32 +/- 0.05) during the pre-hatching blastocyst stage to 0.70 +/- 0.08 at 6-12 days and 1.30 +/- 0.23 at greater than or equal to 13 days of hatched blastocyst attachment and proliferation of trophoblast cells. GnRH concentrations in culture media obtained from embryos (n = 5) that failed to hatch and attach were mostly undetectable (less than or equal to 0.1). Samples that did not contain detectable GnRH failed to show detectable CG. Immunocytochemical studies, using a specific monoclonal anti-GnRH antibody (HU4H) as well as polyclonal antisera (LR-1), revealed that immunopositive GnRH cells were localized in pre-hatching blastocysts (n = 4), in blastocysts (n = 2) after 5-10 days of attachment and in monolayer cultures (n = 4) of well-established embryonic trophoblast cells. GnRH positive staining was seen only in cytotrophoblasts but not in syncytiotrophoblasts. Similarly, cytotrophoblast, but not syncytiotrophoblast, cells of the rhesus placenta were immunopositive. In controls, either in the absence of antibody or in the presence of antibody pre-absorbed with GnRH, these cells failed to show stain. These observations indicate, for the first time, that an immunoreactive GnRH is produced and secreted by blastocysts during the peri-attachment period and by embryo-derived cytotrophoblast cells in the rhesus monkey.
Resumo:
Adult rat Leydig cells in culture synthesize and secrete riboflavin carrier protein (RCP) as demonstrated by [S-35]-methionine incorporation into newly synthesized proteins followed by immunoprecipitation as well as specific radioimmunoassay. LH stimulates the secretion of RCP 4-fold which could be inhibited upto 75% by an aromatase inhibitor. 8-bromo-cyclic AMP and cholera toxin could mimic the LH stimulated secretion of the carrier protein. The extent of stimulation of RCP secretion brought about by exogenous estradiol-17 beta is comparable to that of LH. The antiestrogen tamoxifen, when added along with either LH or estrogen, inhibited the stimulated levels significantly. These results show that the estrogen-inducible riboflavin carrier is secreted by Leydig cells under positive regulation of LH.