933 resultados para rainfall-runoff empirical statistical model
Resumo:
The propagation of 7.335 MHz, c.w. signals over a 5212 km sub-auroral, west-east path is studied. Measurements and semi-empirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with one produced by a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The signals are found to suffer exceptionally low losses at certain local times under geomagnetically quiet conditions. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low Kp values. A sharp cut-off in low-power losses at a mean Kp of 2.75 strongly implicates the trough in the propagation of these signals. The Doppler shifts observed at these times cannot be explained by a simple ray-tracing model. It is shown however, that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.
Resumo:
Simulation models are widely employed to make probability forecasts of future conditions on seasonal to annual lead times. Added value in such forecasts is reflected in the information they add, either to purely empirical statistical models or to simpler simulation models. An evaluation of seasonal probability forecasts from the Development of a European Multimodel Ensemble system for seasonal to inTERannual prediction (DEMETER) and ENSEMBLES multi-model ensemble experiments is presented. Two particular regions are considered: Nino3.4 in the Pacific and the Main Development Region in the Atlantic; these regions were chosen before any spatial distribution of skill was examined. The ENSEMBLES models are found to have skill against the climatological distribution on seasonal time-scales. For models in ENSEMBLES that have a clearly defined predecessor model in DEMETER, the improvement from DEMETER to ENSEMBLES is discussed. Due to the long lead times of the forecasts and the evolution of observation technology, the forecast-outcome archive for seasonal forecast evaluation is small; arguably, evaluation data for seasonal forecasting will always be precious. Issues of information contamination from in-sample evaluation are discussed and impacts (both positive and negative) of variations in cross-validation protocol are demonstrated. Other difficulties due to the small forecast-outcome archive are identified. The claim that the multi-model ensemble provides a ‘better’ probability forecast than the best single model is examined and challenged. Significant forecast information beyond the climatological distribution is also demonstrated in a persistence probability forecast. The ENSEMBLES probability forecasts add significantly more information to empirical probability forecasts on seasonal time-scales than on decadal scales. Current operational forecasts might be enhanced by melding information from both simulation models and empirical models. Simulation models based on physical principles are sometimes expected, in principle, to outperform empirical models; direct comparison of their forecast skill provides information on progress toward that goal.
Resumo:
In 2004 the National Household Survey (Pesquisa Nacional par Amostras de Domicilios - PNAD) estimated the prevalence of food and nutrition insecurity in Brazil. However, PNAD data cannot be disaggregated at the municipal level. The objective of this study was to build a statistical model to predict severe food insecurity for Brazilian municipalities based on the PNAD dataset. Exclusion criteria were: incomplete food security data (19.30%); informants younger than 18 years old (0.07%); collective households (0.05%); households headed by indigenous persons (0.19%). The modeling was carried out in three stages, beginning with the selection of variables related to food insecurity using univariate logistic regression. The variables chosen to construct the municipal estimates were selected from those included in PNAD as well as the 2000 Census. Multivariate logistic regression was then initiated, removing the non-significant variables with odds ratios adjusted by multiple logistic regression. The Wald Test was applied to check the significance of the coefficients in the logistic equation. The final model included the variables: per capita income; years of schooling; race and gender of the household head; urban or rural residence; access to public water supply; presence of children; total number of household inhabitants and state of residence. The adequacy of the model was tested using the Hosmer-Lemeshow test (p=0.561) and ROC curve (area=0.823). Tests indicated that the model has strong predictive power and can be used to determine household food insecurity in Brazilian municipalities, suggesting that similar predictive models may be useful tools in other Latin American countries.
Resumo:
A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.
Resumo:
Hydrological loss is a vital component in many hydrological models, which are usedin forecasting floods and evaluating water resources for both surface and subsurface flows. Due to the complex and random nature of the rainfall runoff process, hydrological losses are not yet fully understood. Consequently, practitioners often use representative values of the losses for design applications such as rainfall-runoff modelling which has led to inaccurate quantification of water quantities in the resulting applications. The existing hydrological loss models must be revisited and modellers should be encouraged to utilise other available data sets. This study is based on three unregulated catchments situated in Mt. Lofty Ranges of South Australia (SA). The paper focuses on conceptual models for: initial loss (IL), continuing loss (CL) and proportional loss (PL) with rainfall characteristics (total rainfall (TR) and storm duration (D)), and antecedent wetness (AW) conditions. The paper introduces two methods that can be implemented to estimate IL as a function of TR, D and AW. The IL distribution patterns and parameters for the study catchments are determined using multivariate analysis and descriptive statistics. The possibility of generalising the methods and the limitations of this are also discussed. This study will yield improvements to existing loss models and will encourage practitioners to utilise multiple data sets to estimate losses, instead of using hypothetical or representative values to generalise real situations.
Resumo:
The US term structure of interest rates plays a central role in fixed-income analysis. For example, estimating accurately the US term structure is a crucial step for those interested in analyzing Brazilian Brady bonds such as IDUs, DCBs, FLIRBs, EIs, etc. In this work we present a statistical model to estimate the US term structure of interest rates. We address in this report all major issues which drove us in the process of implementing the model developed, concentrating on important practical issues such as computational efficiency, robustness of the final implementation, the statistical properties of the final model, etc. Numerical examples are provided in order to illustrate the use of the model on a daily basis.
Resumo:
Atypical points in the data may result in meaningless e±cient frontiers. This follows since portfolios constructed using classical estimates may re°ect neither the usual nor the unusual days patterns. On the other hand, portfolios constructed using robust approaches are able to capture just the dynamics of the usual days, which constitute the majority of the business days. In this paper we propose an statistical model and a robust estimation procedure to obtain an e±cient frontier which would take into account the behavior of both the usual and most of the atypical days. We show, using real data and simulations, that portfolios constructed in this way require less frequent rebalancing, and may yield higher expected returns for any risk level.
Resumo:
An economic-statistical model is developed for variable parameters (VP) (X) over bar charts in which all design parameters vary adaptively, that is, each of the design parameters (sample size, sampling interval and control-limit width) vary as a function of the most recent process information. The cost function due to controlling the process quality through a VP (X) over bar chart is derived. During the optimization of the cost function, constraints are imposed on the expected times to signal when the process is in and out of control. In this way, required statistical properties can be assured. Through a numerical example, the proposed economic-statistical design approach for VP (X) over bar charts is compared to the economic design for VP (X) over bar charts and to the economic-statistical and economic designs for fixed parameters (FP) (X) over bar charts in terms of the operating cost and the expected times to signal. From this example, it is possible to assess the benefits provided by the proposed model. Varying some input parameters, their effect on the optimal cost and on the optimal values of the design parameters was analysed.
Resumo:
Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science.
Resumo:
Changing precipitation patterns and temperature relate directly to water resources and water security. This report presents the findings of an assessment of the water sector in Grenada with respect to the projected impact of climate change. Grenada‘s water resources comprise primarily surface water, with an estimated groundwater potential to satisfy about 10%-15% of the present potable requirement. On the smaller islands Carriacou and Petite Martinique, domestic water is derived exclusively from rainwater catchments. Rainfall seasonality is marked and the available surface water during the dry season declines dramatically. Changing land use patterns, increase in population, expansion in tourism and future implementation of proposed irrigation schemes are projected to increase future water requirements. Economic modeling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios as illustrated. The results suggest that water supply will exceed forecasted water demand under B2 and BAU during all four decades. However under the A2 scenario, water demand will exceed water supply by the year 2025. It is important to note that the model has been constrained by the omission of several key parameters, and time series for climate indicators, data for which are unavailable. Some of these include time series for discharge data, rainfall-runoff data, groundwater recharge rates, and evapotranspiration. Further, the findings which seem to indicate adequacy of water are also masked by seasonality in a given year, variation from year to year, and spatial variation within the nation state. It is imperative that some emphasis be placed on data generation in order to better project for the management of Grenada‘s water security. This analysis indicates the need for additional water catchment, storage and distribution infrastructure, as well as institutional strengthening, in order to meet the future needs of the Grenadian population. Strategic priorities should be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Grenada has embarked on several initiatives that can be considered strategies toward adaptation to the variabilities associated with climate change. The Government should ensure that these programs be carried out to the optimal levels for reasons described above. The ―no-regrets approach‖ which intimates that measures will be beneficial with or without climate change should be adopted. A study on the Costs of Inaction for the Caribbean in the face of climate change listed Grenada among the countries which would experience significant impacts on GDP between now and 2100 without adaptation interventions. Investment in the water sector is germane to building Grenada‘s capacity to cope with the multivariate impact of changes in the parameters of climate.
Resumo:
Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Esta pesquisa objetivou desenvolver um modelo estatístico de previsão de vazão para Marabá - PA, bem como avaliar a estrutura dinâmica atmosférica associada aos extremos do regime hidrológico da bacia do rio Tocantins. O modelo hidrológico de regressão linear múltipla utilizou as séries de observações fluviométricas e pluviométricas obtidas no banco de dados da ANA. Os testes de validação do modelo estatístico com coeficiente de Nash acima de 0,9 e erro padrão de 1,5 % e 5% nos períodos de cheia e estiagem, respectivamente, permitem que as previsões de vazão em Marabá possam ser geradas com antecedência de 2 a 4 (3 a 5) dias para o período da cheia (estiagem). Através da técnica de composições considerando todos os anos com registro de vazão acima/muito acima e abaixo/muito abaixo do normal, obtidos pela metodologia dos percentis, investigaram-se as características regionais da precipitação e a estrutura dinâmica atmosférica em cada mês (Novembro a Abril). As composições dos anos com vazão acima/muito acima mostraram que a precipitação sobre a bacia foi acima do normal em todos os meses, sendo que os padrões de grande escala indicaram a configuração associada ao fenômeno La Niña no Pacífico e condições de resfriamento no Atlântico Sul; intensificação tanto do ramo ascendente zonal da célula de Walker como do ramo ascendente meridional da célula de Hadley; intensificação da Alta da Bolívia posicionada mais a leste e anomalias negativas de ROL associadas à atuação conjunta da ZCAS e ZCIT. Inversamente, as composições dos anos com vazão abaixo/muito abaixo evidenciaram a predominância de precipitação abaixo do normal em toda bacia hidrográfica, a qual se associou com as condições de aquecimento (El Niño) sobre o Pacífico, Atlântico sul aquecido, célula de Walker e Hadley com enfraquecimento dos movimentos ascendentes, posicionamento da Alta da Bolívia mais a oeste com anomalias positivas de ROL indicando inibição da atividade convectiva tropical. Adicionalmente, uma análise quantitativa dos impactos sócio-econômicos sobre os principais núcleos da cidade de Marabá revelou que aproximadamente 10 mil pessoas (5% da população) são atingidas pela cheia do rio Tocantins com custos nas operações de enchente acima de R$ 500.000,00, considerando o caso de 2005.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)