956 resultados para protein targeting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia trachomatis is a significant human pathogen with potentially severe disease sequelae in the genital tract, including infertility. A successful vaccine will need to effectively target immunity to the genital mucosa. Intranasal immunisation with cholera toxin (CT) can target immunity to the genital tract, but has the potential to cause neurological side effects. CTA1-DD is a non-toxic potent mucosal adjuvant which combines the enzymatic properties of CT, with a B cell targeting moiety. Here, we demonstrate that intranasal immunisation with CTA1-DD and chlamydial Major Outer Membrane Protein (MOMP) results in the induction of neutralising systemic and mucosal antibodies, and reduces the level of chlamydial shedding following intravaginal challenge with Chlamydia muridarum. Thus, CTA1-DD is an effective adjuvant for vaccine development against Chlamydia trachomatis, and possibly also a range of other genital pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Recurrent protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD) and bronchiectasis are characterised by a chronic wet cough and are important causes of childhood respiratory morbidity globally. Haemophilus influenzae and Streptococcus pneumoniae are the most commonly associated pathogens. As respiratory exacerbations impair quality of life and may be associated with disease progression, we will determine if the novel 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) reduces exacerbations in these children. Methods A multi-centre, parallel group, double-blind, randomised controlled trial in tertiary paediatric centres from three Australian cities is planned. Two hundred six children aged 18 months to 14 years with recurrent PBB, CSLD or bronchiectasis will be randomised to receive either two doses of PHiD-CV or control meningococcal (ACYW(135)) conjugate vaccine 2 months apart and followed for 12 months after the second vaccine dose. Randomisation will be stratified by site, age (<6 years and >= 6 years) and aetiology (recurrent PBB or CSLD/bronchiectasis). Clinical histories, respiratory status (including spirometry in children aged >= 6 years), nasopharyngeal and saliva swabs, and serum will be collected at baseline and at 2, 3, 8 and 14 months post-enrolment. Local and systemic reactions will be recorded on daily diaries for 7 and 30 days, respectively, following each vaccine dose and serious adverse events monitored throughout the trial. Fortnightly, parental contact will help record respiratory exacerbations. The primary outcome is the incidence of respiratory exacerbations in the 12 months following the second vaccine dose. Secondary outcomes include: nasopharyngeal carriage of H. influenzae and S. pneumoniae vaccine and vaccine-related serotypes; systemic and mucosal immune responses to H. influenzae proteins and S. pneumoniae vaccine and vaccine-related serotypes; impact upon lung function in children aged >= 6 years; and vaccine safety. Discussion As H. influenzae is the most common bacterial pathogen associated with these chronic respiratory diseases in children, a novel pneumococcal conjugate vaccine that also impacts upon H. influenzae and helps prevent respiratory exacerbations would assist clinical management with potential short- and long-term health benefits. Our study will be the first to assess vaccine efficacy targeting H. influenzae in children with recurrent PBB, CSLD and bronchiectasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular 'code' recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Importance of the field: Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. Areas covered in this review: HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. What the reader will gain: In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. Take home message: Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer. © 2010 Informa UK, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. Methods We examined LAT3 protein expression in human prostate cancer tissue microarrays. LAT function was inhibited using a leucine analog (BCH) in androgen-dependent and -independent environments, with gene expression analyzed by microarray. A PC-3 xenograft mouse model was used to study the effects of inhibiting LAT1 and LAT3 expression. Results were analyzed with the Mann-Whitney U or Fisher exact tests. All statistical tests were two-sided. Results LAT3 protein was expressed at all stages of prostate cancer, with a statistically significant decrease in expression after 4–7 months of neoadjuvant hormone therapy (4–7 month mean = 1.571; 95% confidence interval = 1.155 to 1.987 vs 0 month = 2.098; 95% confidence interval = 1.962 to 2.235; P = .0187). Inhibition of LAT function led to activating transcription factor 4–mediated upregulation of amino acid transporters including ASCT1, ASCT2, and 4F2hc, all of which were also regulated via the androgen receptor. LAT inhibition suppressed M-phase cell cycle genes regulated by E2F family transcription factors including critical castration-resistant prostate cancer regulatory genes UBE2C, CDC20, and CDK1. In silico analysis of BCH-downregulated genes showed that 90.9% are statistically significantly upregulated in metastatic castration-resistant prostate cancer. Finally, LAT1 or LAT3 knockdown in xenografts inhibited tumor growth, cell cycle progression, and spontaneous metastasis in vivo. Conclusion Inhibition of LAT transporters may provide a novel therapeutic target in metastatic castration-resistant prostate cancer, via suppression of mammalian target of rapamycin complex 1 activity and M-phase cell cycle genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibrogenic stresses promote progression of renal tubulointerstitial fibrosis, disparately affecting survival, proliferation and trans-differentiation of intrinsic renal cell populations through ill-defined biomolecular pathways. We investigated the effect of fibrogenic stresses on the activation of cell-specific mitogen-activated protein kinase (MAPK) in renal fibroblast, epithelial and endothelial cell populations. The relative outcomes (cell death, proliferation, trans-differentiation) associated with activation or inhibition of extracellular-regulated protein kinase (ERK) or stress activated/c-Jun N terminal kinase (JNK) were analysed in each renal cell population after challenge with oxidative stress (1 mmol/L H2O2), transforming growth factor-beta1 (TGF-beta1, 10 ng/mL) or tumour necrosis factor-alpha (TNF-alpha, 50 ng/mL) over 0-20 h. Apoptosis increased significantly in all cell types after oxidative stress (P < 0.05). In fibroblasts, oxidative stress caused the activation of ERK (pERK) but not JNK (pJNK). Inhibition of ERK by PD98059 supported its role in a fibroblast death pathway. In epithelial and endothelial cells, oxidative stress-induced apoptosis was preceded by early induction of pERK, but its inhibition did not support a pro-apoptotic role. Early ERK activity may be conducive to their survival or promote the trans-differentiation of epithelial cells. In epithelial and endothelial cells, oxidative stress induced pJNK acutely. Pretreatment with SP600125 (JNK inhibitor) verified its pro-apoptotic activity only in epithelial cells. Transforming growth factor-beta1 did not significantly alter mitosis or apoptosis in any of the cell types, nor did it alter MAPK activity. Tumor necrosis factor-alpha caused increased apoptosis with no associated change in MAPK activity. Our results demonstrate renal cell-specific differences in the activation of ERK and JNK following fibrotic insult, which may be useful for targeting excessive fibroblast proliferation in chronic fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies can play a protective but non-essential role in natural chlamydial infections dependent on antigen specificity and antibody isotype. IgG is the dominant antibody in both male and female reproductive tract mucosal secretions, and is bi-directionally trafficked across epithelia by the neonatal Fc receptor (FcRn). Using physiologically relevant pH-polarized epididymal epithelia grown on Transwells®, IgG specifically targeting an extracellular chlamydial antigen; the Major Outer Membrane Protein (MOMP), enhanced uptake and translocation of infection at pH 6-6.5 but not at neutral pH. This was dependent on FcRn expression. Conversely, FcRn-mediated transport of IgG targeting the intracellular chlamydial inclusion membrane protein A (IncA), induced aberrant inclusion morphology, recruited autophagic proteins independent of lysosomes, and significantly reduced infection. Challenge of female mice with MOMP-specific IgG-opsonized C. muridarum delayed infection clearance but exacerbated oviduct occlusion. In male mice, MOMP-IgG elicited by immunization afforded no protection against testicular chlamydial infection, whereas; the transcytosis of IncA-IgG significantly reduced testicular chlamydial burden. Together these data show that the protective and pathological effects of IgG are dependent on FcRn-mediated transport as well as the specificity of IgG for intracellular or extracellular antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria rapid diagnostic tests (RDTs) play a critical role in malaria case management, surveillance and case investigations. Test performance is largely determined by design and quality characteristics, such as detection sensitivity, specificity, and thermal stability. However, parasite characteristics such as variable or absent expression of antigens targeted by RDTs can also affect RDT performance. Plasmodium falciparum parasites lacking the PfHRP2 protein, the most common target antigen for detection of P. falciparum, have been reported in some regions. Therefore, accurately mapping the presence and prevalence of P. falciparum parasites lacking pfhrp2 would be an important step so that RDTs targeting alternative antigens, or microscopy, can be preferentially selected for use in such regions. Herein the available evidence and molecular basis for identifying malaria parasites lacking PfHRP2 is reviewed, and a set of recommended procedures to apply for future investigations for parasites lacking PfHRP2, is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Loss of erythrocyte membrane protein band 4.1-like 3 (EPB41L3; aliases: protein 4.1B, differentially expressed in adenocarcinoma of the lung-1 (Dal-1)) expression has been implicated in tumor progression. Objective: To evaluate literature describing the role of EPB41L3 in tumorigenesis and metastasis, and to consider whether targeting this gene would be useful in the treatment of prostate cancer. Methods: A literature review of studies describing EPB41L3 and its aliases was conducted. Online databases (NCBI, SwissProt) were also interrogated to collect further data. Results/conclusion: A growing body of evidence supports a role for loss of EPB41L3 in tumor progression, including in prostate cancer. Therapeutic strategies that could be harnessed to upregulate EPB41L3 gene expression in prostate cancer cells are currently being developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular matrix (ECM) is a complex network of various proteins and proteoglycans which provides tissues with structural strength and resilience. By harvesting signaling molecules like growth factors ECM has the capacity to control cellular functions including proliferation, differentiation and cell survival. Latent transforming growth factor β (TGF-β) binding proteins (LTBPs) associate fibrillar structures of the ECM and mediate the efficient secretion and ECM deposition of latent TGF-β. The current work was conducted to determine the regulatory regions of LTBP-3 and -4 genes to gain insight into their tissue-specific expression which also has impact on TGF-β biology. Furthermore, the current research aimed at defining the ECM targeting of the N-terminal variants of LTBP-4 (LTBP-4S and -4L), which is required to understand their functions in tissues and to gain insight into conditions in which TGF-β is activated. To characterize the regulatory regions of LTBP-3 and -4 genes in silico and functional promoter analysis techniques were employed. It was found that the expression of LTBP-4S and -4L are under control of two independent promoters. This finding was in accordance with the observed expression patterns of LTBP-4S and -4L in human tissues. All promoter regions characterized in this study were TATAless, GC-rich and highly conserved between human and mouse species. Putative binding sites for Sp1 and GATA family of transcription factors were recognized in all of these regulatory regions. It is possible that these transcription factors control the basal expression of LTBP-3 and -4 genes. Smad binding element was found within the LTBP-3 and -4S promoter regions, but it was not present in LTBP-4L promoter. Although this element important for TGF-β signaling was present in LTBP-4S promoter, TGF-β did not induce its transcriptional activity. LTBP-3 promoter activity and mRNA expression instead were stimulated by TGF-β1 in osteosarcoma cells. It was found that the stimulatory effect of TGF-β was mediated by Smad and Erk MAPK signaling pathways. The current work explored the ECM targeting of LTBP-4S and identified binding partners of this protein. It was found that the N-terminal end of LTBP-4S possesses fibronectin (FN) binding sites which are critical for its ECM targeting. FN deficient fibroblasts incorporated LTBP-4S into their ECM only after addition of exogenous FN. Furthermore, LTBP-4S was found to have heparin binding regions, of which the C-terminal binding site mediated fibroblast adhesion. Soluble heparin prevented the ECM association of LTBP-4S in fibroblast cultures. In the current work it was observed that there are significant differences in the secretion, processing and ECM targeting of LTBP-4S and -4L. Interestingly, it was observed that most of the secreted LTBP-4L was associated with latent TGF-β1, whereas LTBP-4S was mainly secreted as a free form from CHO cells. This thesis provides information on transcriptional regulation of LTBP-3 and -4 genes, which is required for the deeper understanding of their tissue-specific functions. Further, the current work elucidates the structural variability of LTBPs, which appears to have impact on secretion and ECM targeting of TGF-β. These findings may advance understanding the abnormal activation of TGF-β which is associated with connective tissue disorders and cancer.