958 resultados para plasma heating by laser
Resumo:
Laser-based Powder Bed Fusion (L-PBF) technology is one of the most commonly used metal Additive Manufacturing (AM) techniques to produce highly customized and value-added parts. The AlSi10Mg alloy has received more attention in the L-PBF process due to its good printability, high strength/weight ratio, corrosion resistance, and relatively low cost. However, a deep understanding of the effect of heat treatments on this alloy's metastable microstructure is still required for developing tailored heat treatments for the L-PBF AlSi10Mg alloy to overcome the limits of the as-built condition. Several authors have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy but often overlooked the peculiarities of the starting supersatured and ultrafine microstructure induced by rapid solidification. For this reason, the effects of innovative T6 heat treatment (T6R) on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy were assessed. The short solution soaking time (10 min) and the relatively low temperature (510 °C) reduced the typical porosity growth at high temperatures and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it increased the amount of Mg and Si in the solid solution available for precipitation hardening during the aging step. The mechanical (at room temperature and 200 °C) and tribological properties of the T6R alloy were evaluated and compared with other solutions, especially with an optimized direct-aged alloy (T5 alloy). Results showed that the innovative T6R alloy exhibits the best mechanical trade-off between strength and ductility, the highest fatigue strength among the analyzed conditions, and interesting tribological behavior. Furthermore, the high-temperature mechanical performances of the heat-treated L-PBF AlSi10Mg alloy make it suitable for structural components operating in mild service conditions at 200 °C.
Resumo:
A novel biocompatible and biodegradable polymer, termed poly(Glycerol malate co-dodecanedioate) (PGMD), was prepared by thermal condensation method and used for fabrication of nanoparticles (NPs). PGMD NPs were prepared using the single oil emulsion technique and loaded with an imaging/hyperthermia agent (IR820) and a chemotherapeutic agent (doxorubicin, DOX). The size of the void PGMD NPs, IR820-PGMD NPs and DOX-IR820-PGMD NPs were approximately 90 nm, 110 nm, and 125 nm respectively. An acidic environment (pH=5.0) induced higher DOX and IR820 release compared to pH=7.4. DOX release was also enhanced by exposure to laser, which increased the temperature to 42°C. Cytotoxicity of DOX-IR820-PGMD NPs was comparable in MES-SA but was higher in Dx5 cells compared to free DOX plus IR820 (p<0.05). The combination of hyperthermia (HT) and chemotherapy improved cytotoxicity in both cell lines. We also explored the cellular response after rapid, short-term and low thermal dose (laser/Dye/NP) induced-heating, and compared it to slow, long-term and high thermal dose cell incubator heating by investigating the reactive oxygen species (ROS) level, hypoxia-inducible factor-1&agr; (HIF-1&agr;) and vascular endothelial growth factor (VEGF) expression. The cytotoxicity of IR820-PGMD NPs after laser/Dye/NP HT resulted in higher cancer cell killing compared to incubator HT. ROS level, HIF-1&agr; and VEGF expression were elevated under incubator HT, while maintained at the baseline level under the laser/Dye/NP HT. In vivo mouse studies showed that NP formulation significantly improved the plasma half-life of IR820 after tail vein injection. Significant lower IR820 content was observed in kidney in DOX-IR820-PGMD NP treatment as compared to free IR820 treatment in our biodistribution studies (p<0.05). In conclusion, both IR820-PGMD NPs and DOX-IR820-PGMD NPs were successfully developed and used for both imaging and therapeutic purposes. Rapid and short-term laser/Dye/NP HT, with a low thermal dose, did not up-regulate HIF-1&agr; and VEGF expression, whereas slow and long-term incubator HT, with a high thermal dose, can enhance expression of both HIF-1&agr; and VEGF.^
Resumo:
In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.
Resumo:
La caractérisation de matériaux par spectroscopie optique d’émission d’un plasma induit par laser (LIPS) suscite un intérêt qui ne va que s’amplifiant, et dont les applications se multiplient. L’objectif de ce mémoire est de vérifier l’influence du choix des raies spectrales sur certaines mesures du plasma, soit la densité électronique et la température d’excitation des atomes neutres et ionisés une fois, ainsi que la température d’ionisation. Nos mesures sont intégrées spatialement et résolues temporellement, ce qui est typique des conditions opératoires du LIPS, et nous avons utilisé pour nos travaux des cibles binaires d’aluminium contenant des éléments à l’état de trace (Al-Fe et Al-Mg). Premièrement, nous avons mesuré la densité électronique à l’aide de l’élargissement Stark de raies de plusieurs espèces (Al II, Fe II, Mg II, Fe I, Mg I, Halpha). Nous avons observé que les densités absolues avaient un comportement temporel différent en fonction de l’espèce. Les raies ioniques donnent des densités électroniques systématiquement plus élevées (jusqu’à 50 % à 200 ns après l’allumage du plasma), et décroissent plus rapidement que les densités issues des raies neutres. Par ailleurs, les densités obtenues par les éléments traces Fe et Mg sont moindres que les densités obtenues par l’observation de la raie communément utilisée Al II à 281,618 nm. Nous avons parallèlement étudié la densité électronique déterminée à l’aide de la raie de l’hydrogène Halpha, et la densité électronique ainsi obtenue a un comportement temporel similaire à celle obtenue par la raie Al II à 281,618 nm. Les deux espèces partagent probablement la même distribution spatiale à l’intérieur du plasma. Finalement, nous avons mesuré la température d’excitation du fer (neutre et ionisé, à l’état de trace dans nos cibles), ainsi que la température d’ionisation, à l’aide de diagrammes de Boltzmann et de Saha-Boltzmann, respectivement. À l’instar de travaux antérieurs (Barthélémy et al., 2005), il nous est apparu que les différentes températures convergeaient vers une température unique (considérant nos incertitudes) après 2-3 microsecondes. Les différentes températures mesurées de 0 à 2 microsecondes ne se recoupent pas, ce qui pourrait s’expliquer soit par un écart à l’équilibre thermodynamique local, soit en considérant un plasma inhomogène où la distribution des éléments dans la plume n’est pas similaire d’un élément à l’autre, les espèces énergétiques se retrouvant au cœur du plasma, plus chaud, alors que les espèces de moindre énergie se retrouvant principalement en périphérie.
Resumo:
Optical emission spectroscopic studies were carried out on the plasma produced by ablation of zinc oxide target using the third harmonic 355 nm of Q-switched Nd:YAG laser, in vacuum and at three different ambient gas oxygen pressures. The spatial variations of electron density Ne and electron temperature Te were studied up to a distance of 20 mm from the target surface. The kinematics of the emitted particles and the expansion of the plume edge are discussed. The optimum conditions favorable for the formation of high quality zinc oxide thin films are thereby suggested.
Resumo:
Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Resumo:
Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity
Resumo:
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
Resumo:
In order to characterise the laser ablation process from high-Tc superconductors, the time evolution of plasma produced by a Q-switching Nd:YAG laser from a GdBa2Cu3O7 superconducting sample has been studied using spectroscopic and ion-probe techniques. It has been observed that there is a fairly large delay for the onset of the emission from oxide species in comparison with those from atoms and ions of the constituent elements present in the plasma. Faster decay occurs for emission from oxides and ions compared with that from neutral atoms. These observations support the view that oxides are not directly produced from the target, but are formed by the recombination process while the plasma cools down. Plasma parameters such as temperature and velocity are also evaluated.
Resumo:
Time and space resolved spectroscopic studies of the molecular band emission from C2 are performed in the plasma produced by irradiating a graphite target with 1:06 m radiation from a Q-switched Nd:YAG laser. High-resolution spectra are recorded from points located at distances up to 15 mm from the target in the presence of ambient helium gas pressure. Depending on the laser irradiance, time of observation and position of the sampled volume of the plasma the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels of C2 molecules have been evaluated as a function of distance for different time delays and laser irradiance. It is also found that the vibrational temperature of C2 molecules decreases with increasing helium pressure.
Resumo:
The spectroscopic analysis of the emission from the plasma produced by irradiating a highT c superconducting GdBa2Cu3O7 target with a high power Nd:YAG laser beam shows the existence of the bands from different oxides in addition to the lines from neutrals and ions of the constituent elements. The spectral emissions by oxide species in laser-induced plasma show considerable time delays as compared to those from neutral and ionic species. Recombination processes taking place during the cooling of the hot plasma, rather than the plasma expansion velocities, have been found to be responsible for the observed time delays in this case. The decays of emission intensities from various species are found to be non-exponential.
Resumo:
The present thesis report the results obtained from the studies carried out on the laser blow off plasma (LBO) from LiF-C (Lithium Fluoride with Carbon) thin film target, which is of particular importance in Tokamak plasma diagnostics. Keeping in view of its significance, plasma generated by the irradiation of thin film target by nanosecond laser pulses from an Nd:YAG laser over the thin film target has been characterized by fast photography using intensified CCD. In comparison to other diagnostic techniques, imaging studies provide better understanding of plasma geometry (size, shape, divergence etc) and structural formations inside the plume during different stages of expansion.