637 resultados para phospholipase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venom of Zhaoermia mangshanensis, encountered solely in Mt Mang in China's Hunan Province, exhibits coagulant, phosphodiesterase, L-amino acid oxidase, kallikrein, phospholipase A(2) and myotoxic activities. The catalytically inactive PLA(2) homolog referred to as zhaoermiatoxin is highly myotoxic and displays high myonecrotic and edema activities. Zhaoermiatoxin possesses a molecular weight of 13,972 Da, consists of 121 amino-acid residues crosslinked by seven disulfide bridges and shares high sequence homology with Lys49-PLA(2)s from the distantly related Asian pitvipers. However, zhaoermiatoxin possesses an arginine residue at position 49 instead of a lysine, thereby suggesting a secondary Lys49 -> Arg substitution which results in a catalytically inactive protein. We have determined the first crystal structure of zhaoermiatoxin, an Arg49-PLA(2), from Zhaoermia mangshanensis venom at 2.05 A resolution, which represents a novel member of phospholipase A(2) family. In this structure, unlike the Lys49 PLA(2)s, the C-terminus is well ordered and an unexpected non-polarized state of the putative calcium-binding loop due to the flip of Lys122 towards the bulk solvent is observed. The orientation of the Arg-49 side chain results in a similar binding mode to that observed in the Lys49 PLA(2)s; however, the guadinidium group is tri-coordinated by carbonyl oxygen atoms of the putative calcium-binding loop, whereas the N zeta atom of lysine is tetra-coordinated as a result of the different conformation adopted by the putative calcium-binding loop. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lys49 snake-venom phospholipase A2 (PLA2) homologues are highly myotoxic proteins which, although lacking catalytic activity, possess the ability to disrupt biological membranes, inducing significant muscle-tissue loss and permanent disability in severely envenomed patients. Since the structural basis for their toxic activity is still only partially understood, the structure of myotoxin II, a monomeric Lys49 PLA2 homologue from Atropoides nummifer, has been determined at 2.08 Å resolution and the anion-binding site has been characterized. © 2006 International Union of Crystallography. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7. Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference. © 2011 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytically inactive phospholipase A2 (PLA2) homologues play key roles in the pathogenesis induced by snake envenomation, causing extensive tissue damage via a mechanism still unknown. Although, the amino acid residues directly involved in catalysis are conserved, the substitution of Asp49 by Arg/Lys/Gln or Ser prevents the binding of the essential calcium ion and hence these proteins are incapable of hydrolyzing phospholipids. In this work, the crystal structure of a Lys49-PLA2 homologue from Bothrops brazili (MTX-II) was solved in two conformational states: (a) native, with Lys49 singly coordinated by the backbone oxygen atom of Val31 and (b) complexed with tetraethylene glycol (TTEG). Interestingly, the TTEG molecule was observed in two different coordination cages depending on the orientation of the nominal calcium-binding loop and of the residue Lys49. These structural observations indicate a direct role for the residue Lys49 in the functioning of a catalytically inactive PLA2 homologue suggesting a contribution of the active site-like region in the expression of pharmacological effects such as myotoxicity and edema formation. Despite the several crystal structures of Lys49-PLA2 homologues already determined, their biological assembly remains controversial with two possible conformations. The extended dimer with the hydrophobic channel exposed to the solvent and the compact dimer in which the active site-like region is occluded by the dimeric interface. In the MTX-II crystal packing analysis was found only the extended dimer as a possible stable quaternary arrangement. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crotoxin is a neurotoxin from Crotalus durissus terrificus venom that shows immunomodulatory, anti-inflammatory, antimicrobial, antitumor and analgesic activities. Structurally, this toxin is a heterodimeric complex composed by a toxic basic PLA2 (Crotoxin B or CB) non-covalently linked to an atoxic non-enzymatic and acidic component (Crotapotin, Crotoxin A or CA). Several CA and CB isoforms have been isolated and characterized, showing that the crotoxin venom fraction is, in fact, a mixture of different molecules derived from the combination of distinct subunit isoforms. Intercro (IC) is a protein from the same snake venom which presents high similarity in primary structure to CB, indicating that it could be an another isoform of this toxin. In this work, we compare IC to the crotoxin complex (CA/CB) and/or CB in order to understand its functional aspects. The experiments with IC revealed that it is a new toxin with different biological activities from CB, keeping its catalytic activity but presenting low myotoxicity and absence of neurotoxic activity. The results also indicated that IC is structurally similar to CB isoforms, but probably it is not able to form a neurotoxic active complex with crotoxin A as observed for CB. Moreover, structural and phylogenetic data suggest that IC is a new toxin with possible toxic effects not related to the typical CB neurotoxin. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammalian species, oocyte activation is initiated by oscillations in the intracellular concentration of free calcium ([Ca2+]i), which are also essential to allow embryonic development. To date, evidence supporting the hypothesis that a sperm factor is responsible for initiating oocyte activation has been presented in various mammalian species. Among the possible candidates to be the active sperm factor is the novel sperm-specific phospholipase C ζ (PLCζ), which besides its testis-specific expression is capable of initiating [Ca2+]i oscillations. In this study, we investigated the presence of PLCζ in the sperm of the domestic cat and whether normospermic and teratospermic cats differ in their PLCζ expression. Immunoblotting with anti-PLCζ antibodies confirmed the presence of an immunoreactive band of ~70 kDa in whole sperm lysates of domestic cat as well as in both soluble and insoluble fractions from this sperm. Additional immunoreactive bands, probably C- and N-terminal truncated versions of PLCζ, were also visualized in the soluble sperm fractions. Interestingly, immunoreactivity of PLCζ was detectable in teratospermic sperm, although with slightly less intensity than in normospermic sperm. In conclusion, domestic cat sperm express PLCζ in both cytosolic and high-pH fractions, which is consistent with data in other mammals. Sperm from teratospermic cats also express PLCζ, albeit at reduced concentrations, which may affect the fertility of these males. © 2013 Elsevier Inc..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Envenomation via snakebites is an important public health problem in many tropical and subtropical countries that, in addition to mortality, can result in permanent sequelae as a consequence of local tissue damage, which represents a major challenge to antivenom therapy. Venom phospholipases A(2) (PLA(2)s) and PLA(2)-like proteins play a leading role in the complex pathogenesis of skeletal muscle necrosis, nevertheless their precise mechanism of action is only partially understood. Recently, detailed structural information has been obtained for more than twenty different members of the PLA(2)-like myotoxin subfamily. In this review, we integrate the available structural, biochemical and functional data on these toxins and present a comprehensive hypothesis for their myotoxic mechanism. This process involves an allosteric transition and the participation of two independent interaction sites for docking and disruption of the target membrane, respectively, leading to a five-step mechanism of action. Furthermore, recent functional and structural studies of these toxins complexed with ligands reveal diverse neutralization mechanisms that can be classified into at least three different groups. Therefore, the data summarized here for the PLA(2)-like myotoxins could provide a useful molecular basis for the search for novel neutralizing strategies to improve the treatment of envenomation by viperid snakes. (C) 2014 Elsevier B.V. All rights reserved.