973 resultados para oral contraceptive agent
Resumo:
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective: The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods: Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm(2)) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (alpha=0.05). Results: The values of DTS (MPa) were: Pure COP- 10.94 +/- 1.30; COP 10%- 30.06 +/- 0.64; COP 50%- 29.87 +/- 0.27; zinc phosphate- 4.88 +/- 0.96. The values of FT (pm) were: Pure COP- 31.09 +/- 3.16; COP 10%- 17.05 +/- 4.83; COP 50%- 13.03 +/- 4.83; Zinc Phosphate- 20.00 +/- 0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion: The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.
Resumo:
To assess pain and swelling in the first 7 days after periapical surgery and their relationship with the agent used for bleeding control.
Resumo:
The antiinflammatory agent curcumin (diferuloylmethane) has a potential to mitigate cancer therapy-induced mucositis. We assessed the in vitro extent of its bactericidal activity and determined the kinetics of its antiinflammatory effect on pharyngeal cells. Bactericidal activity was assessed using the LIVE/DEAD® Kit after 4 h of exposure to curcumin (50-200 μM) in 18 oropharyngeal species commonly associated with bacteremia in febrile neutropenia. Moraxella catarrhalis or its outer membrane vesicles were used to determine the inhibitory effect of curcumin on bacteria-induced proinflammatory activity as determined by cytokine release into the supernatant of Detroit 562 pharyngeal cells using the Luminex® xMAP® technology. Curcumin exerted a concentration-dependent bactericidal effect on all 18 species tested. After 4 h at 200 μM, 12 species tested were completely killed. Preincubation of Detroit cells with 200 μM curcumin for 5 to 60 min resulted in complete suppression of the release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, granulocyte macrophage-colony stimulating factor, and vascular endothelial growth factor. Fibroblast growth factor-2 and interferon-γ were not affected. Repetitive exposure to curcumin resulted in repetitive suppression of cytokine/chemokine expression lasting from 4 to 6 h. Through reduction of oral microbial density as well as suppression of inflammation cascades curcumin may prevent cancer therapy-induced oral mucositis, e.g., when applied as multiple daily mouth washes.
Resumo:
BACKGROUND Curcumin (CUR) is a dietary spice and food colorant (E100). Its potent anti-inflammatory activity by inhibiting the activation of Nuclear Factor-kappaB is well established. METHODS The aim of this study was to compare natural purified CUR (nCUR) with synthetically manufactured CUR (sCUR) with respect to their capacity to inhibit detrimental effects in an in vitro model of oral mucositis. The hypothesis was to demonstrate bioequivalence of nCUR and sCUR. RESULTS The purity of sCUR was HPLC-confirmed. Adherence and invasion assays for bacteria to human pharyngeal epithelial cells demonstrated equivalence of nCUR and sCUR. Standard assays also demonstrated an identical inhibitory effect on pro-inflammatory cytokine/chemokine secretion (e.g., interleukin-8, interleukin-6) by Detroit pharyngeal cells exposed to bacterial stimuli. There was bioequivalence of sCUR and nCUR with respect to their antibacterial effects against various pharyngeal species. CONCLUSION nCUR and sCUR are equipotent in in vitro assays mimicking aspects of oral mucositis. The advantages of sCUR include that it is odorless and tasteless, more easily soluble in DMSO, and that it is a single, highly purified molecule, lacking the batch-to-batch variation of CUR content in nCUR. sCUR is a promising agent for the development of an oral anti-mucositis agent.
Resumo:
BACKGROUND Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. METHODS One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. RESULTS 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 - 20 mg/l, and for propolis 20 mg/l - 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. CONCLUSIONS Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component.
Resumo:
Experimental lemurs either were infected orally with the agent of bovine spongiform encephalopathy (BSE) or were maintained as uninfected control animals. Immunohistochemical examination for proteinase-resistant protein (prion protein or PrP) was performed on tissues from two infected but still asymptomatic lemurs, killed 5 months after infection, and from three uninfected control lemurs. Control tissues showed no staining, whereas PrP was detected in the infected animals in tonsil, gastrointestinal tract and associated lymphatic tissues, and spleen. In addition, PrP was detected in ventral and dorsal roots of the cervical spinal cord, and within the spinal cord PrP could be traced in nerve tracts as far as the cerebral cortex. Similar patterns of PrP immunoreactivity were seen in two symptomatic and 18 apparently healthy lemurs in three different French primate centers, all of which had been fed diets supplemented with a beef protein product manufactured by a British company that has since ceased to include beef in its veterinary nutritional products. This study of BSE-infected lemurs early in their incubation period extends previous pathogenesis studies of the distribution of infectivity and PrP in natural and experimental scrapie. The similarity of neuropathology and PrP immunostaining patterns in experimentally infected animals to those observed in both symptomatic and asymptomatic animals in primate centers suggests that BSE contamination of zoo animals may have been more widespread than is generally appreciated.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents.
Resumo:
Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.
Resumo:
A nistatina (NYS) é o fármaco de primeira escolha no tratamento da candidíase oral, que frequentemente acomete mais os indivíduos imunocomprometidos e pacientes com outras desordens (diabetes não tratada, neoplasias, imunodeficiências). No mercado brasileiro, a NYS é encontrada na forma de suspensão oral aquosa, onde o procedimento para sua administração consiste em bochechar o medicamento. Apesar de haver a indicação de que se mantenha o contato direto entre fármaco e a mucosa oral, na qual se encontra a Candida spp., o que aumentaria expressivamente o sucesso terapêutico, a suspensão não apresenta tal propriedade. Assim, a NYS que é fármaco com ação efetiva contra a candidíase oral, é considerada pertencente à Classe IV do Sistema de Classificação Biofarmacêutica, ou seja, apresenta baixa solubilidade e baixa permeabilidade. A baixa solubilidade pode comprometer sua disponibilidade na cavidade oral, e consequentemente, sua ação farmacológica. Diante desse quadro, o objetivo do presente trabalho foi o desenvolvimento de dispersões sólidas de NYS para o tratamento da candidíase oral, e sua posterior incorporação em gel mucoadesivo oral, favorecendo a formulação no local de ação. As dispersões sólidas são sistemas farmacêuticos, onde um fármaco pouco solúvel em água encontra-se dispersado em um carreador, no estado sólido. Os carreadores normalmente são hidrofílicos, o que permite que esses sistemas sejam empregados para aumentar a solubilidade aquosa do fármaco. Assim, foram desenvolvidas as dispersões sólidas de NYS, pelo método de eliminação do solvente, empregando como carreadores, lactose, HPMC, poloxamer 407 e poloxamer 188. Essas foram submetidas à caracterização por análise térmica, usando os ensaios de calorimetria exploratória diferencial (DSC) e termogravimetria/termogravimetria derivada (TG/DTG). Dentre essas dispersões sólidas, aquelas que se mostraram com comportamento térmico sugerindo a formação de um novo \"sistema\", foram analisadas por meio de ensaio de solubilidade. Dessa forma, a formulação NYS DS G2 (49) se destacou, pois apresentou maior solubilidade em água (4,484 mg/mL); em pH 5,5 (4,249 mg/mL) e em pH 7,0 (4,293 mg/mL), ou seja, houve um aumento de 1,426 vezes em água; 4,227 vezes em pH 5,5; e 2,743 vezes em pH 7,0. Essa formulação foi, por fim avaliada por difração de raio-X e espectroscopia de infravermelho com transformada de Fourier, técnicas que corroboraram com a análise térmica quanto à indicação de formação da dispersão sólida. Por sua vez, essa dispersão sólida foi incorporada em 4 bases de géis mucoadesivos de carbopol ® 934 PNF, alterando apenas a concentração do polímero (0,5; 1,0; 1,5; 2,0 %p/p). Foi observado que a liberação de NYS DS G2 (49) foi superior, quando comparada à liberação de NYS MP a partir do gel, e através do ensaio de mucoadesão, percebeu-se que os géis desenvolvidos apresentaram propriedades mucoadesivas compatíveis com relatos na literatura, independentemente da quantidade de carbopol ® empregada. As características reológicas foram distintas, e foi observado que as formulações Gel A e Gel B, que possuem menor quantidade de polímero, tiverem um indicativo de comportamento de fluido newtoniano, diferente dos demais, o que pode não ser desejado para esse tipo de forma farmacêutica tópica e semi-sólida. Ao final desse trabalho, pode-se concluir que foi possível desenvolver um sistema farmacêutico na forma de dispersão sólida com maior solubilidade que a NYS pura, e sua incorporação em uma forma farmacêutica mucoadesiva, e que a liberação da NYS na forma DS foi muito superior que o fármaco na forma \"convencional\", o que permite que a NYS esteja mais disponível na cavidade oral, e também junto à mucosa bucal, o que levaria a efeito farmacológico mais efetivo do antifúngico.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Mode of access: Internet.
Resumo:
A model was developed in dogs to determine the impact of oral enrofloxacin administration on the indigenous coliform population in the gastrointestinal tract and subsequent disposition to colonization by a strain of multidrug-resistant Escherichia coli (MDREC). Dogs given a daily oral dose of 5 mg enrofloxacin kg(-1) for 21 consecutive days showed a significant decline in faecal coliforms to levels below detectable limits by 72 In of administration. Subsequently, faecal coliforms remained suppressed throughout the period of enrofloxacin dosing. Upon termination of antibiotic administration, the number of excreted faecal coliforms slowly returned over an 8-day period, to levels comparable to those seen prior to antibiotic treatment. Enrofloxacin-treated dogs were more effectively colonized by MDREC, evidenced by a significantly increased count of MDREC in the faeces (7.1 +/- 1.5 log(10) g(-1)) compared with non-antibiotic-treated dogs (5.2 +/- 1.2; P = 0.003). Furthermore, antibiotic treatment also sustained a significantly longer period of MDREC excretion in the faeces (26.8 +/- 10.5 days) compared with animals not treated with enrofloxacin (8.5 +/- 5.4 days; P = 0.0215). These results confirm the importance of sustained delivery of an antimicrobial agent to maintain and expand the colonization potential of drug-resistant bacteria in vivo, achieved in part by reducing the competing commensal coliforms in the gastrointestinal tract to below detectable levels in the faeces. Without in vivo antimicrobial selection pressure, commensal coliforms dominated the gastrointestinal tract at the expense of the MDREC population. Conceivably, the model developed could be used to test the efficacy of novel non-antibiotic strategies aimed at monitoring and controlling gastrointestinal colonization by multidrug-resistant members of the Enterobacteriaceae that cause nosocomial infections.
Resumo:
Two polycationic lipophilic-core carbohydrate-based dendrons 2a-b and five polycationic lipophilic-core peptide dendrons 3-6, containing four arginine or lysine terminal residues, were synthesized and then tested in rats as penetration enhancers for the oral delivery of low molecular weight heparin. Better results were obtained with dendrons containing terminal lysine residues than terminal arginine. A significant anti-factor Xa activity was obtained when low molecular weight heparin was coadministered with dendron 5. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
It is advantageous to develop controlled release dosage forms utilising site-specific delivery or gastric retention for those drugs with frequent or high dosing regimes. Cimetidine is a potent and selective H2 -reception antagonist used in the treatment of various gastrointestinal disorders and localisation in the upper gastrointestinal tract could significantly improve the drug absorption. Three strategies were undertaken to prepare controlled release systems for the delivery of cimetidine to the GI tract. Firstly, increasing the contact time of the dosage form with the mucus layer which coats the gastrointestinal tract, may lead to increased gastric residence times. Mucoadhesive microspheres, by forming a gel-like structure in contact with the mucus, should prolong the contact between the delivery system and the mucus layer, and should have the potential for releasing the drug in sustained and controlled manner. Gelatin microspheres were prepared, optimised and characterised for their physicochemical properties. Crosslinking concentration, particle size and cimetidine loading influenced drug release profiles. Particle size was influenced by surfactant concentration and stirring speed. Mucoadheisve polymers such as alginates, chitosans, carbopols and polycarbophil were incorporated into the microspheres using different strategies. The mucoadhesion of the microspheres was determined using in vitro surface adsorption and ex vivo rat intestine models. The surface-modification strategy resulted in highest levels of microsphere adhesion, with chitosan, carbopols and polycarbophil as the most successful candidates for improvement of adhesion, with over 70% of the microspheres retained ex vivo. Specific targeting agent UEA I lectin was conjugated to the surface of gelatin microspheres, which enhanced the adhesion of the microspheres. Alginate raft systems containing antacids have been used extensively in the treatment of gastro-oesophageal disease and protection of the oesophageal mucosa from acid reflux by forming a viscous raft layer on the surface of the stomach content, and could be an effective delivery system for controlled release of cimetidine.
Resumo:
Zinc-a2-glycoprotein (ZAG) is an adipokine with the potential as a therapeutic agent in the treatment of obesity and type 2 diabetes. In this study we show that human ZAG, which is a 41-kDa protein, when administered to ob/ob mice at 50 µg/d-1 orally in the drinking water produced a progressive loss of body weight (5 g after 8 d treatment), together with a 0.5 C increase in rectal temperature and a 40% reduction in urinary excretion of glucose. There was also a 33% reduction in the area under the curve during an oral glucose tolerance test and an increased sensitivity to insulin. These results were similar to those after iv administration of ZAG. However, tryptic digestion was shown to inactivate ZAG. There was no evidence of human ZAG in the serum but a 2-fold elevation of murine ZAG, which was also observed in target tissues such as white adipose tissue. To determine whether the effect was due to interaction of the human ZAG with the ß-adrenergic (ß-AR) in the gastrointestinal tract before digestion, ZAG was coadministered to ob/ob mice together with propanolol (40 mg/kg-1), a nonspecific ß-AR antagonist. The effect of ZAG on body weight, rectal temperature, urinary glucose excretion, improvement in glucose disposal, and increased insulin sensitivity were attenuated by propanolol, as was the increase in murine ZAG in the serum. These results suggest that oral administration of ZAG increases serum levels through interaction with a ß-AR in the upper gastrointestinal tract, and gene expression studies showed this to be in the esophagus.