888 resultados para motor evoked potentials


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Method Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Results Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. Conclusion The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global information is considered the primitive of visual perception in Gestalt psychology. Further, L. Chen ( 2005) proposed a new theory of topological visual perception. According to this theory, the perception of topological difference is faster than o

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to isolate a single sound source among concurrent sources and reverberant energy is necessary for understanding the auditory world. The precedence effect describes a related experimental finding, that when presented with identical sounds from two locations with a short onset asynchrony (on the order of milliseconds), listeners report a single source with a location dominated by the lead sound. Single-cell recordings in multiple animal models have indicated that there are low-level mechanisms that may contribute to the precedence effect, yet psychophysical studies in humans have provided evidence that top-down cognitive processes have a great deal of influence on the perception of simulated echoes. In the present study, event-related potentials evoked by click pairs at and around listeners' echo thresholds indicate that perception of the lead and lag sound as individual sources elicits a negativity between 100 and 250 msec, previously termed the object-related negativity (ORN). Even for physically identical stimuli, the ORN is evident when listeners report hearing, as compared with not hearing, a second sound source. These results define a neural mechanism related to the conscious perception of multiple auditory objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful interaction with the world depends on accurate perception of the timing of external events. Neurons at early stages of the primate visual system represent time-varying stimuli with high precision. However, it is unknown whether this temporal fidelity is maintained in the prefrontal cortex, where changes in neuronal activity generally correlate with changes in perception. One reason to suspect that it is not maintained is that humans experience surprisingly large fluctuations in the perception of time. To investigate the neuronal correlates of time perception, we recorded from neurons in the prefrontal cortex and midbrain of monkeys performing a temporal-discrimination task. Visual time intervals were presented at a timescale relevant to natural behavior (<500 ms). At this brief timescale, neuronal adaptation--time-dependent changes in the size of successive responses--occurs. We found that visual activity fluctuated with timing judgments in the prefrontal cortex but not in comparable midbrain areas. Surprisingly, only response strength, not timing, predicted task performance. Intervals perceived as longer were associated with larger visual responses and shorter intervals with smaller responses, matching the dynamics of adaptation. These results suggest that the magnitude of prefrontal activity may be read out to provide temporal information that contributes to judging the passage of time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental model of quinine induced blindness is presented. Electrophysiological, angiographical and morphological examinations were made. The occurrence of blindness and any recovery from blindness was dependent upon the dose of quinine taken. As no evidence of acute retinal ischaemia was found it is concluded that quinine is retinotoxic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este estudo teve como finalidade compreender os efeitos da estimulação auditiva com uma voz desconhecida e familiar, na pessoa em coma nos parâmetros e curvas monitorizados em ambiente de cuidados intensivos. A revisão da literatura acerca da comunicação verbal em cuidados intensivos e consequente análise de conteúdo foi utilizada para construir a mensagem estímulo, que foi refinada e validada por um grupo de peritos. Esta mensagem é constituída por três partes: apresentação e orientação, informação e avaliação funcional e estimulação, e serviu como referência para a gravação das mensagens no estudo que se seguiu. Neste estudo também foi traduzida, adaptada para a realidade Portuguesa e convertida em linguagem CIPE® a Coma Recovery Scale – Revised, que deu origem ao Instrumento de Avaliação da Recuperação do Coma da Universidade de Aveiro (IARCUA), que foi sujeito a testes de fiabilidade.Os resultados da análise sugerem que o referido instrumento pode ser utilizado com fiabilidade, mesmo quando existem algumas flutuações no estado clínico das pessoas. A correlação dos scores das subescalas foi elevada e superior aos resultados apresentados para a escala original, indicando que esta escala é um instrumento indicado para a avaliação da função neuro-comportamental. O estudo da influência da estimulação auditiva foi realizado com uma amostra de 10 pessoas em coma internadas no Serviço de Cuidados Intensivos do Hospital de Santo António, no ano de 2009, com total autorização da Comissão de Ética do referido Hospital, sendo a selecção baseada numa avaliação preliminar através do instrumento referido e avaliação dos potenciais evocados auditivos do tronco cerebral. A pessoa significativa foi seleccionada através da aplicação de testes sociométricos. A todos os participantes foram dadas informações escritas acerca do estudo e foi concedido um período de tempo para reflexão e posterior decisão acerca da autorização ou não da aplicação do estudo. O tempo total de recolha de dados foi de 45 minutos distribuídos equitativamente por três períodos: pré-estimulação, estimulação e pós-estimulação. Os valores recolhidos foram os das curvas de ECG, das pressões arteriais e pletismografia de pulso e dos parâmetros de frequência cardíaca, pressão arterial sistólica, diastólica e média, temperatura corporal periférica e saturação parcial de oxigénio, utilizando-se o programa Datex-Ohmeda S/5 Collect para o efeito. A análise estatística e clínica dos dados, foi realizada por períodos de estimulação e fases da mensagem estímulo, aplicando-se testes estatísticos e uma análise baseada em critérios de relevância clínica.Os resultados demonstraram que na estimulação com uma voz desconhecida se verificou um aumento dos valores da frequência cardíaca, dos valores das pressões arteriais sistólicas, diastólicas e médias, na transição entre os períodos de préestimulação e estimulação e que estes valores tendem a normalizar quando termina a estimulação. Estas alterações foram corroboradas pela análise dos intervalos RR e da curva de pressões arteriais. Em relação à estimulação com uma voz familiar, as pessoas também reagiram aquando da estimulação com aumento dos valores da frequência cardíaca e dos valores das pressões arteriais sistólicas, diastólicas e médias. No entanto em alguns casos verificámos que os valores destes parâmetros continuaram a aumentar no período de pós-estimulação, o que revela que os utentes desenvolveram episódios de ansiedade de separação. Relativamente à temperatura corporal periférica e saturação parcial de oxigénio, em ambos os casos, não verificámos alterações aquando da estimulação. Relativamente às fases da mensagem estímulo, durante a estimulação com uma voz desconhecida, os participantes apresentaram uma maior variabilidade nos valores da frequência cardíaca, pressões arteriais sistólica, diastólica e média na fase de avaliação funcional e estimulação. Esta constatação é corroborada pela análise das curvas monitorizadas. Em relação à estimulação com uma voz familiar, além de reagirem nos mesmos parâmetros com maior intensidade na fase de avaliação funcional e estimulação, os participantes também reagiram de forma relevante na fase de apresentação e orientação. Este estudo contribui para a reflexão sobre a prática comunicacional com as pessoas inconscientes, no sentido de sensibilizar os enfermeiros e outros profissionais de saúde para a importância da comunicação nas unidades de cuidados intensivos e contribuir igualmente para a melhoria da qualidade de cuidados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Normal visual perception requires differentiating foreground from background objects. Differences in physical attributes sometimes determine this relationship. Often such differences must instead be inferred, as when two objects or their parts have the same luminance. Modal completion refers to such perceptual "filling-in" of object borders that are accompanied by concurrent brightness enhancement, in turn termed illusory contours (ICs). Amodal completion is filling-in without concurrent brightness enhancement. Presently there are controversies regarding whether both completion processes use a common neural mechanism and whether perceptual filling-in is a bottom-up, feedforward process initiating at the lowest levels of the cortical visual pathway or commences at higher-tier regions. We previously examined modal completion (Murray et al., 2002) and provided evidence that the earliest modal IC sensitivity occurs within higher-tier object recognition areas of the lateral occipital complex (LOC). We further proposed that previous observations of IC sensitivity in lower-tier regions likely reflect feedback modulation from the LOC. The present study tested these proposals, examining the commonality between modal and amodal completion mechanisms with high-density electrical mapping, spatiotemporal topographic analyses, and the local autoregressive average distributed linear inverse source estimation. A common initial mechanism for both types of completion processes (140 msec) that manifested as a modulation in response strength within higher-tier visual areas, including the LOC and parietal structures, is demonstrated, whereas differential mechanisms were evident only at a subsequent time period (240 msec), with amodal completion relying on continued strong responses in these structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity.