957 resultados para modal decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkyl hydroperoxides (ROOH) are attributed a key role in the biochemical oxidation of lipids during oxidative stress.1 In this chemistry ROOH compounds, where the R groups are unsaturated fatty acids, are viewed as transient ntermediates which are readily degraded, due to the lability of the RO-OH bond, to yield potentially genotoxic aldehydes and ketones.2 Generally, the decomposition of alkyl hydroperoxides is thought to be mediated by radical abstraction or electron transfer processes usually involving enzymes, transition metals, or recently, Vitamin C.3 In this paper we present the first unambiguous experimental and computational evidence for base-mediated heterolytic decomposition of simple alkyl hydroperoxides by the mechanism outlined in Scheme 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzes the management of air pollutant substance in Chinese industrial sectors from 1998 to 2009. Decomposition analysis applying the logarithmic mean divisia index is used to analyze changes in emissions of air pollutants with a focus on the following five factors: coal pollution intensity (CPI), end-of-pipe treatment (EOP), the energy mix (EM), productive efficiency change (EFF), and production scale changes (PSC). Three pollutants are the main focus of this study: sulfur dioxide (SO2), dust, and soot. The novelty of this paper is focusing on the impact of the elimination policy on air pollution management in China by type of industry using the scale merit effect for pollution abatement technology change. First, the increase in SO2 emissions from Chinese industrial sectors because of the increase in the production scale is demonstrated. However, the EOP equipment that induced this change and improvements in energy efficiency has prevented an increase in SO2 emissions that is commensurate with the increase in production. Second, soot emissions were successfully reduced and controlled in all industries except the steel industry between 1998 and 2009, even though the production scale expanded for these industries. This reduction was achieved through improvements in EOP technology and in energy efficiency. Dust emissions decreased by nearly 65% between 1998 and 2009 in the Chinese industrial sectors. This successful reduction in emissions was achieved by implementing EOP technology and pollution prevention activities during the production processes, especially in the cement industry. Finally, pollution prevention in the cement industry is shown to result from production technology development rather than scale merit. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzes toxic chemical substance management in three U.S. manufacturing sectors from 1991 to 2008. Decomposition analysis applying the logarithmic mean Divisia index is used to analyze changes in toxic chemical substance emissions by the following five factors: cleaner production, end-of-pipe treatment, transfer for further management, mixing of intermediate materials, and production scale. Based on our results, the chemical manufacturing sector reduced toxic chemical substance emissions mainly via end-of-pipe treatment. In the meantime, transfer for further management contributed to the reduction of toxic chemical substance emissions in the metal fabrication industry. This occurred because the environmental business market expanded in the 1990s, and the infrastructure for the recycling of metal and other wastes became more efficient. Cleaner production is the main contributor to toxic chemical reduction in the electrical product industry. This implies that the electrical product industry is successful in developing a more environmentally friendly product design and production process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of modal choice between rail and air arises as public awareness of carbon dioxide (CO2) emissions by the transportation sector rises. In this paper, we answer this question quantitatively by performing an efficiency benchmarking analysis that takes into account life-cycle CO2 emission due to transport service provision. The paper employs nonparametric efficiency estimation methods, namely a slacks-based inefficiency measure, as well as a more conventional directional distance function approach. We apply them to a panel data set for three major railway companies and the aviation sector in Japan for the period from 1999 to 2007. Results shows that, contrary to the common argument, air transport can still be more socially efficient than rail transport, even when the environmental load due to CO2 emission is incorporated. This is due to the aviation sector's extremely low user cost, measured in terms of in-vehicle time. In other words, aviation is a necessary transportation mode for those with a very high willingness to pay for their time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study decomposed the determinants of environmental quality into scale, technique, and composition effects. We applied a semiparametric method of generalized additive models, which enabled us to use flexible functional forms and include several independent variables in the model. The differences in the technique effect were found to play a crucial role in reducing pollution. We found that the technique effect was sufficient to reduce sulfur dioxide emissions. On the other hand, its effect was not enough to reduce carbon dioxide (CO2) emissions and energy use, except for the case of CO2 emissions in high-income countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data-oriented empirical research on the Chinese adverb “ke” has led to the conclusion that the semantics of the word as a modal adverb is always two-fold: it marks both “contrast” and “emphasis”. “Adversativity” as used in literature on “ke” is but one type of contrast marked by “ke”. Other types of contrast marked by “ke” in declarative sentences include: a) what is assumed by the hearer and what the truth of a matter is; b) what the sentence literally talks about and what it also implicitly conveys; and c) the original wishful nature of the stated action and its final realization. In all declarative sentences, what the adverb emphasizes is the “factuality” of what is stated. Chinese Abstract [提要] 对外汉语教学的实践表明,汉语副词“可”是教学中的难点,这跟我们对其语义内涵缺乏全面准确的认识有关。为了全面揭示副词“可”的核心语义,本作者以电视连续剧《渴望》前二十集为主要语料,并结合其他一些电视剧、电视节目以及文献里已有的语料,对出现在各种语境中的“可”进行了大量的考察和归纳性研究。研究结果表明,作为语气副词的“可”其核心语义不是单一的,它总是在标示“对比”(即“不同”)的同时表示强调。它所强调的是所述内容的“事实性”或“终然性”。由于篇幅所限,本文仅对陈述句中的语气副词“可”加以讨论

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the question why the automotive mode and the large technological system it creates, continues to dominate urban transport systems despite the availability of more cost-efficient alternatives. A number of theoretical insights are developed into the way these losses evolve from path dependent growth, and lead to market failure and lock-in. The important role of asymmetries of influence is highlighted. A survey of commuters in Jakarta Indonesia is used to provide a measure of transport modal lock-in (TML) in a developing country conurbation. A discrete choice experiment is used to provide evidence for the thesis central hypothesis that in such conurbations there is a high level of commuter awareness of the negative externalities generated by TML which can produce a strong level of support for its reversal. Why TML nevertheless remains a strong and durable feature of the transport system is examined with reference to the role of asymmetries of influence.