143 resultados para mineralisation
Resumo:
A large fragment of a paleovolcano of Silurian to Early Devonian age was discovered in the Voikar volcanic belt suggesting an ensimatic island are as its geodynamic environment. Formationally, the rocks under study are comparable to Pleistocene island arc volcanites and their paleo-analogues. The volcanites of the Toupugol complex underwent strong hydrothermal-metasomatic alteration: propylites, acid metasomatic rocks and quartz-carbonate veins, which must have resulted from hydrothermal-metasomatic alteration of andesitoids. Both volcanites and apovolcanic hydrothermal rocks in Toupugol were found to host noble metal mineralisation. It is found in close association with sulphides, particularly pyrite. Free gold was discovered in all investigated volcanites and hydrothermal rocks and is characterised by low mercury content and an unusual set of microimpurities (Pt, Pd, Cu, Fe, S) suggesting its links to the mantle substrate.
Resumo:
Exhumed faults hosting hydrothermal systems provide direct insight into relationships between faulting and fluid flow, which in turn are valuable for making hydrogeological predictions in blind settings. The Grimsel Breccia Fault (Aar massif, Central Swiss Alps) is a late Neogene, exhumed dextral strike-slip fault with a maximum displacement of 25–45 m, and is associated with both fossil and active hydrothermal circulation. We mapped the fault system and modelled it in three dimensions, using the distinctive hydrothermal mineralisation as well as active thermal fluid discharge (the highest elevation documented in the Alps) to reveal the structural controls on fluid pathway extent and morphology. With progressive uplift and cooling, brittle deformation inherited the mylonitic shear zone network at Grimsel Pass; preconditioning fault geometry into segmented brittle reactivations of ductile shear zones and brittle inter-shear zone linkages. We describe ‘pipe’-like, vertically oriented fluid pathways: (1) within brittle fault linkage zones and (2) through alongstrike- restricted segments of formerly ductile shear zones reactivated by brittle deformation. In both cases, low-permeability mylonitic shear zones that escaped brittle reactivation provide important hydraulic seals. These observations show that fluid flow along brittle fault planes is not planar, but rather highly channelised into sub-vertical flow domains, with important implications for the exploration and exploitation of geothermal energy.
Resumo:
The Esperanza Zn-Pb-Ag vein, owned by Compañía de Minas Buenaventura S.A.A., lies over 4000 to 4650 masl in the Western Cordillera of the Peruvian Central Andes. The Esperanza low sulphidation epithermal vein trends ~E-W along 1500 m; it dips to the South and can be followed to 350 m depth. As other veins of the district, like Teresita and Bienaventurada, it is hosted by intermediate to felsic volcanics (andesitic to dacitic compositions) of the Huachocolpa Group (Middle Miocene to Upper Pliocene). The mineralisation occurs mostly as open space filling related to fracture development during the Quechua III deformational event. Main ore minerals are sphalerite, galena, tetrahedrite, pyrite, chalcopyrite and Ag and Pb sulfosalts; quartz, barite and calcite are the main gangue minerals. Current production grades are ~5% Zn, ~8Oz/t Ag, ~3% Pb; usually very low Cu (mean ~0.04%).
Resumo:
Proper management of the N applied to crops is necessary in order to increase yield, improve water use efficiency (WUE) and reduce the pollutions risks with the least economic, environmental and health costs. A field study with melon crops was conducted during 2005, 2006 and 2007 in central Spain, using 11 different amounts of N. Some environmental indexes have been proposed, to provide an essential tool for determining the groundwater pollution risks associated with common agricultural practices. These indexes are related to variation in the nitrate concentration of drinking water (Impact Index (II)) and groundwater (Environmental Impact Index (EII)). Also, the Management Efficiency (ME) was calculated, which is related to the amount of fruit produced per gram of N leached (Nl). To determine the optimum dose of N, it was also necessary to know the N mineralisation (NM). Our results show that 160 kg ha?1 of available N (Nav) produced the maximum fruit yield (FY), enhanced WUE and gave an NM of 85 kg ha?1, while the impact indexes did not exceed the fixed maximum allowable limits and ME was adequate. The proposed indexes proved to be an effective tool for determining the risk of nitrate contamination and confirmed that the optimum dose of N corresponded to the maximum FY with minimal loss of Nl.
Resumo:
Proper management of the N applied to crops is necessary in order to increase yield, improve water use efficiency (WUE) and reduce the pollutions risks with the least economic, environmental and health costs. A field study with melon crops was conducted during 2005, 2006 and 2007 in central Spain, using 11 different amounts of N. Some environmental indexes have been proposed, to provide an essential tool for determining the groundwater pollution risks associated with common agricultural practices. These indexes are related to variation in the nitrate concentration of drinking water (Impact Index (II)) and groundwater (Environmental Impact Index (EII)). Also, the Management Efficiency (ME) was calculated, which is related to the amount of fruit produced per gram of N leached (Nl). To determine the optimum dose of N, it was also necessary to know the N mineralisation (NM). Our results show that 160 kg ha−1 of available N (Nav) produced the maximum fruit yield (FY), enhanced WUE and gave an NM of 85 kg ha−1, while the impact indexes did not exceed the fixed maximum allowable limits and ME was adequate. The proposed indexes proved to be an effective tool for determining the risk of nitrate contamination and confirmed that the optimum dose of N corresponded to the maximum FY with minimal loss of Nl.
Resumo:
Se investiga la distribución espacial de contenidos metálicos analizados sobre testigos de sondeos obtenidos en las campañas de exploración de la Veta Pallancata. Se aplica el análisis factorial a dicha distribución y a los cocientes de los valores metálicos, discriminando los que están correlacionados con la mineralización argentífera y que sirven como guías de exploración para hallar zonas de potenciales reservas por sus gradientes de variación.Abstract:The metal distribution in a vein may show the paths of hydrothermal fluid flow at the time of mineralization. Such information may assist for in-fill drilling. The Pallancata Vein has been intersected by 52 drill holes, whose cores were sampled and analysed, and the results plotted to examine the mineralisation trends. The spatial distribution of the ore is observed from the logAg/logPb ratio distribution. Au is in this case closely related to Ag (electrum and uytenbogaardtite, Ag3AuS2 ). The Au grade shows the same spatial distribution as the Ag grade. The logAg/logPb ratio distribution also suggests possible ore to be expected at deeper locations. Shallow supergene Ag enrichment was also observed.
Resumo:
Sediment porewater oxygen profiles were measured with micro and needle electrodes in sediment cores of 27 stations in the Skagerrak (northeastern North Sea). Oxygen penetration depth ranged from 3 to 20 mm depth. Fluxes estimated from the oxygen gradients varied from 3 to 18 mmol m**-2 d**-1. Oxygen penetration and flux depend on water depth, but possibly more on the hydrological conditions, related to the import of fresh organic matter by primary production in the water column. Oxygen fluxes were not related to the total organic carbon (TOC) content of the sediments. Stations in the eastern part of the Skagerrak showed high burial rates of TOC. At 6 stations porewater chemistry of Fe, Mn and NO3- was strongly associated with the oxygen distribution. The average relative contribution of terminal electron acceptors to carbon mineralisation was estimated at 85% for O2, 0.5% for Mn, 4.5% for [NO3]3-, 1% for Fe and 9% for [SO4]2-. At one station the occurrence of exceptionally high solid manganese oxyhydroxides was probably related to an active internal manganese cycle.
Resumo:
Termites are the most important soil ecosystem engineers of semi-arid and arid habitats. They enhance decomposition processes as well as the subsequent mineralisation of nutrients by bacteria and fungi. Through their construction of galleries, nests and mounds, they promote soil turnover and influence the distribution of nutrients and also alter texture and hydrological properties of soils, thereby affecting the heterogeneity of their ecosystem. The main aim of the present thesis was to define the impact of termites on ecosys-tem functioning in a semi-arid ecosystem. In a baseline study, I assessed the diversity of termite taxa in relation to the amount of precipitation, the vegetation patterns and the land use systems at several sites in Namibia. Subsequently, I focussed on a species that is highly abundant in many African savannas, the fungus growing and mound building species Macro-termes michaelseni (Sjöstedt, 1914). I asked how this species influences the spatial hetero-geneity of soil and vegetation patterns. From repeated samplings at 13 sites in Namibia, I obtained 17 termite taxa of 15 genera. While the type of land use seems to have a minor effect on the termite fauna, the mean annual precipitation explained 96% and the Simpson index of vascular plant diversity 81% of the variation in taxa diversity. The number of termite taxa increased with both of these explanation variables. In contrast to former studies on Macrotermes mounds in several regions of Africa that I reviewed, soil analyses from M. michaelseni mounds in the central Namibian savanna revealed that they contain much higher nitrogen contents when compared to their parent material. Further analyses revealed that nitrate forms a major component of the nitrogen content in termite mounds. As nitrate solves easily in water, evaporation processes are most probably responsible for the transport of solved nitrates to the mound surface and their accumulation there. The analysed mounds in central Namibia contained higher sand propor-tions compared to the mounds of the former studies. Through the higher percentage of coarse and middle sized pores, water moves more easily in sandy soils compared to more clayey soils. In consequence, evaporation-driven nitrate accumulation can occur in the studied mounds at high rates. ff...
Resumo:
A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The incorporation of organic matter ( OM) in soils that are able to rapidly sorb applied phosphorus ( P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1 - 100 mM, concentrations much higher than those in soils ( generally < 0.05 mM). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal - chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption ( as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months ( Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term ( 30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (N-o) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the Wet PPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R-2 = 0.96), although it was
Resumo:
We present new major element, trace element and Nd-isotope data for 30 alluvial sediments collected from 25 rivers in Queensland, E Australia. Samples were chosen to represent drainage from the region's most important lithologies, including Tertiary intraplate volcanic rocks, a Cretaceous igneous province (and sedimentary rocks derived thereof) as well as Proterozoic blocks. In most chemical and isotopic aspects, the alluvial sediments represent binary or ternary mixing relationships, with absolute abundances implied to reflect the proportion of lithologies in the catchments. When averaged, the studied sediments differ from other proxies of upper continental crust (UCC) mainly in their relative middle rare earth element enrichment (including an elevated Sm/Nd ratio), higher relative Eu abundance and higher Nb/Ta ratio. These features are inherited from eroded Tertiary intraplate basalts, which commonly form topographic highs in the studied region. Despite the high degree of weathering strong to excellent coherence between similarly incompatible elements is found for all samples. From this coherence, we suggest revisions of the following upper crustal element ratios: Y/Ho = 26.2, Yb/Tm = 6.37, Th/W = 7.14, Th/Tl = 24 and Zr/Hf = 36.9. Lithium, Rb, Cs and Be contents do not seem depleted relative to UCC, which may reflect paucity of K-feldspar in the eroded catchments. Nickel, Cr, Pb, Cu and Zn concentrations are elevated in polluted rivers surrounding the state capital. River sediments in the Proterozoic Georgetown Inlier are elevated in Pb, Cu and Zn but this could be a natural phenomenon reflecting abundant sulphide mineralisation in the area. Except for relative Sr concentrations, which broadly anticorrelate with mean annual rainfall in catchments, there is no obvious relationship between the extent of weathering and climate types, which range from and to tropical. The most likely explanation for this observation is that the weathering profiles in many catchments are several Myr old, established during the much wetter Miocene period. The studied sediment compositions (excluding those from the Proterozoic catchments) are used to propose a new trace element normalisation termed MUQ (MUd from Queensland), which serves as an alternative to UCC proxies derived from sedimentary rocks. Copyright (C) 2005 Elsevier Ltd
Resumo:
Sugarcane crop residues ('trash') have the potential to supply nitrogen (N) to crops when they are retained on the soil surface after harvest. Farmers should account for the contribution of this N to crop requirements in order to avoid over-fertilisation. In very wet tropical locations, the climate may increase the rate of trash decomposition as well as the amount of N lost from the soil-plant system due to leaching or denitrification. A field experiment was conducted on Hydrosol and Ferrosol soils in the wet tropics of northern Australia using N-15-labelled trash either applied to the soil surface or incorporated. Labelled urea fertiliser was also applied with unlabelled surface trash. The objective of the experiment was to investigate the contribution of trash to crop N nutrition in wet tropical climates, the timing of N mineralisation from trash, and the retention of trash N in contrasting soils. Less than 6% of the N in trash was recovered in the first crop and the recovery was not affected by trash incorporation. Around 6% of the N in fertiliser was also recovered in the first crop, which was less than previously measured in temperate areas (20-40%). Leaf samples taken at the end of the second crop contined 2-3% of N from trash and fertilizer applied at the beginning of the experiment. Although most N was recovered in the 0-1.5 m soil layer there was some evidence of movement of N below this depth. The results showed that trash supplies N slowly and in small amounts to the succeeding crop in wet tropics sugarcane growing areas regardless of trash placement (on the soil surface or incorporated) or soil type, and so N mineralisation from a single trash blanket is not important for sugarcane production in the wet tropics.
Resumo:
This study presents the first attempt to constrain the evolution of the North Anatolian Fault Zone (NAFZ) by age dating and isotope tracing of clay minerals formed during near-surface faulting. Extensive illitic clay mineralisation occurred along the NAFZ related to hydrothermal alteration of the fault gouges and pseudotachylytes. Samples representing the pre-fault protoliths outside the fault zone do not contain authigenic illitic clay minerals indicating that hydrothermal processes were confined to the areas within the fault zone. K-Ar age data indicate that the hydrothermal system and the associated illite authigenesis initiated at similar to 57 Ma. This process is interpreted to reflect the onset of significant strike-slip or transtensional faulting immediately after the continental collision related to the closure of the Neotethys Ocean. Following the initiation of the fault movements in the latest Paleocene-Early Eocene, displacements along the NAFZ have continued, with probably intensified fault activities at similar to 26 Ma and later than similar to 8 Ma. Oxygen isotope compositions of the illitic clays from different locations along the NAFZ are similar, with narrow ranges in delta O-18 values indicating clay precipitation from fluids with similar oxygen isotope compositions and crystallisation temperatures. The delta O-18 and delta D values of the calculated fluid isotopic composition (delta O-18=5.9 parts per thousand to 11.2 parts per thousand, delta D=-59 parts per thousand to -73 parts per thousand) are consistent with metamorphic and magmatic origin of fluids mobilised during active tectonism. The interpretation of the fluid flow history of the NAFZ is in agreement with that reported previously for some well-known large-scale high-angle fault zones, which similarly developed along collisional-type orogenic belts and are commonly associated with significant mesothermal ore mineralisation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Unusually high concentrations of exchangeable-NH4+ (up to 270 kg-N/ha) were observed in a Vertisol below 1 m in southeast Queensland. This study aimed to identify the source of this NH4+. Preliminary sampling of native vegetation and cropping areas had found that elevated NH4+was only present under cropped soil, indicating that clearing was linked to the NH4+formation. Mechanisms of NH4+formation that may have occurred in the subsoil after clearing were hypothesised to be a) mineralisation of organic-N; b) NO3- reduction to NH4+; and/or c) the release of fixed-NH4+. In addition it was proposed that nitrification was inhibited in the subsoil, and that this allowed any NH4+formed to accumulate over time. Incubation experiments to examine nitrification rates revealed that nitrification was undetectable, and appeared to be limited by a combination of subsoil acidity and low numbers of nitrifying organisms. Mineralisation studies also revealed that the mineralisation of organic-N was undetectable, and that mineralising organisms were limited by acidity. A small amount of nitrate ammonification could be observed with the aid of a 15N tracer if the soil was waterlogged. However, this NH4+was insufficient to account for the overall NH4+accumulation, and these waterlogged conditions were not observed in the field. Concentrations of fixed- NH4+ measured were also too low to have been responsible for the accumulation of exchangeable-NH4+. It was concluded that none of the proposed hypotheses of NH4+formation could account for the NH4+accumulation observed.