984 resultados para metastable optical pumping He-3 Helium-3 polarizer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate extremely narrow resonances for polarization rotation in an atomic vapor. The resonances are created using a strong control laser on the same transition, which polarizes the atoms due to optical pumping among the magnetic sublevels. As the power in the control laser is increased, successively higher-order nested polarization-rotation resonances are created, with progressively narrower linewidths. We study these resonances in the D-2 line of Rb in a room temperature vapor cell, and demonstrate a width of 0.14 G for the third-order rotation. The physical basis for the observed resonances is that optical pumping results in a simplified. AV-type level structure with differential dressing of the levels by the control laser, which is why the control power has to be sufficiently high for each resonance to appear. This explanation is borne out by a density-matrix analysis of the system. The dispersive lineshape and subnatural width of the resonance lends itself naturally to applications such as laser locking to atomic transitions and precision measurements. Copyright (c) EPLA, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars.

In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation.

In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch.

In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10-19 G (or 10-21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons.

In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS to leading order. This result is significant for the extraction of binary parameters from gravitational wave observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite sapphire/Ti:sapphire crystals for high-power laser application were grown by the hydrothermal method. The results of the X-ray rocking curve analysis indicate high crystalline quality of the surface Al2O3 material. The strong bonding between the overgrown Al2O3 and seed Ti:Al2O3 crystals is indispensable for withstanding high thermal stresses produced by intense optical pumping. The optical loss at the boundary of the composite crystal is considerably low, indicating the lack of scattering centers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue-green GaN-based vertical cavity surface emitting lasers (VCSELs) were fabricated with two dielectric Ta2O5/SiO2 distributed Bragg reflectors. Lasing action was observed at a wavelength of 498.8 nm at room temperature under optical pumping. Threshold energy density and emission linewidth were 189 mJ/cm(2) and 0.15 nm, respectively. The result demonstrates that blue-green VCSELs can be realised using III-nitride semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrafast dynamics of in-plane four-state magnetization reversal from compressively strained (Ga,Mn)As film was investigated by magneto-optical Kerr rotation measurement. The magnetization reversal signal was dramatically suppressed upon pumping, and recovered slowly with time evolution. The low switching field H-c1 increased abruptly from 30 to 108 G on the first several picoseconds and recovered back to the value before optical pumping within about 500 ps, whereas the high switching field H-c2 did not change obviously upon pumping, implying a domain-wall nucleation/propagation at low fields and coherent magnetization rotation at high fields in the magnetization reversal process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the transfer-matrix method to research the band structures in one-dimensional photonic crystals composed of anomalous dispersion material ( saturated atomic cesium vapor). Our calculations show that that type of photonic crystal possesses an ultra-narrow photonic band gap and this band gap is tunable when altering the electron population in the atomic ground state of the anomalous dispersion material by the optical pumping method. Copyright (C) EPLA, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indium tin oxide/Si-rich SiO2/p-Si structured devices are fabricated to study the electroluminescence (EL) of the Si-rich SiO2 (SRO) material. The obvious peaks at similar to 1050nm and similar to 1260nm in the EL are ascribed to localized state transitions of amorphous Si (alpha-Si) clusters. The EL afterglow associated with alpha-Si clusters is observed from this structure at room temperature, while the afterglow is absent in the case of optical pumping. It is believed that carrier-induced defects act as trap centres in the alpha-Si clusters, resulting in the EL afterglow. The phenomenon of the EL afterglow indicates the limits of EL performance and electrical modulation of the SRO material with a larger fraction of alpha-Si clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methanol isotopic species CH3OD has also proved to be an efficient and powerful medium to generate radiation in the far infrared (FIR) region. After the critical review of 1994, six papers have been published dealing with new FIR laser lines from this molecule. As a consequence of the use of wide tunability waveguide CO2 lasers as well as a new pulsed CO2 laser operating at hot and sequential bands, as of optical pumping sources, the total number of the FIR laser lines increased from 122 in 1994 to 227 today. In this communication we present an updated and complete catalogue of FIR laser lines generated from CH3OD. Information on wavelength, offset, relative polarization, intensity, and optimum operation pressure is generally available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a study of the CH3OD molecule in a search for new far-infrared (FIR) laser lines. For optical pumping of large offset vibrational absorption transitions, a continuous-wave waveguide CO2 laser with 300 MHz tunability around each line was used for the first time. As a consequence, 17. new far-infrared laser emissions were observed. For these lines, we also present data on wavelength, intensity, offset, relative polarization, and optimum operation pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the influence on optical properties of alkali halides such as CsCl in a covalent glassy matrix has been investigated. Chalcogenide glasses belonging to the (GeS2)-(Ga2S3)-CsCI system with high ratio of CsCl present an entire transparency in the visible range. These glasses maintain good transmission up to 12 mu m. Furthermore, the thermo-mechanical properties and the glass hygroscopicity have been investigated as function of the CsCl amount. This new generation of glasses presents a great interest for optical application. They could be used both for passive applications (multi-spectral imaging) and active applications for rare-earth doping due to their good transmission in the visible range, increasing optical pumping possibilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectroscopic properties of Tm3+-doped fluoroindate glasses (FIG) were described by single wavelength pumping in the red region. The Judd-Ofelt (J-O) theory was used to obtain the quantum efficiency of the 4f-4f transitions and other spectroscopic parameters. The dynamics of the fluorescence was investigated and energy transfer (ET) processes among Tm3+ ions were studied. The results indicate that a two-step one-photon absorption process is responsible for the ultraviolet upconversion (UC) emissions, and dipole-dipole interaction provides the main contribution for ET rate is equal to the decay rate of noninteracting among active ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic properties of ytterbium-doped tellurile glasses with different compositions are reported. Results of linear refractive index, absorption and emission spectra, and fluorescence lifetimes are presented. The studied samples present high refractive index (∼2.0) and large transmission window (380-6000nm). Absorption and emission cross-sections are calculated as well as the minimum pump laser intensity. The results are compared with the values of other laser materials, in order to investigate applications as laser media in the infrared region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sol-gel process and the wide variety of alkoxides commercially available have facilitated the processing of various Organic-Inorganic Hybrid Materials. In general, the hybrids are excellents matrix to incorporate organic or inorganic dopants that presents photochromic, thermochromic, and halochromic effects and in some cases photorefractive effects. The GPTS-TEOS hybrid matrix when deposited in the form of film is very resistant, adherent, has excellent transparency in visible region and allows to be doped with various azo-dye and metal salts of unusual oxidation states. One of the main characteristics of the azo-dyes when immersed in some hybrid matrix , is the capacity to isomerizes through group Azo (-N = N-) would can be commutated between the Cis (Z) and Trans (E) configurations by means of light or heat. Our goal was through the sol-gel process to prepare hybrid films of GPTS-TEOS doped with azo-dyes Methyl Red and Disperse Red 1, and characterize them optically. The characterizations are performed using techniques of UV / Vis spectroscopy, to identify changes in the absorption band of azo-dyes in the presence of optical pumping, (photochromic effects), in function of temperature (thermochromic effect). These properties are of wide scientific and technological interest because they will contribute to the confection Smart Windows (windows sensible to light), temperature sensors monitored optically and also in the recording of amplitude and phase diffraction gratings