843 resultados para metallographic microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper dodecanoate films prepared by emulsion method exhibit superhydrophobic property with water contact angle of 155 degrees and sliding angle of <2 degrees. The films have been characterised by using X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Surface microstructure of copper dodecanoate consists of numerous microscale papillas of about 6-12 mu m in length with a diameter in the range of 360-700 nm. The superhydrophobicity of the films is due to their dual micronano surface morphology. The wetting behaviour of the film surface was studied by a simple water immersion test. The results show that copper dodecanoate film retained superhydrophobic property even after immersing in water for about 140 h. The optical absorption spectrum exhibits two broadbands centred at 388 and 630 nm that have been assigned to B-2(1g) -> E-2(g) and B-2(1g) -> B-2(2g) transitions of Cu2+ ions, respectively. The electron paramagnetic resonance spectrum exhibits two resonance signals with effective g values at g(parallel to)approximate to 2.308 and g(perpendicular to) approximate to 2.071, which suggests that the unpaired electron occupies d(x2-y2) orbital in the ground state. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten incorporated diamond like carbon (W-DLC) nanocomposite thin films with variable fractions of tungsten were deposited by using reactive biased target ion beam deposition technique. The influence of tungsten incorporation on the microstructure, surface topography, mechanical and tribological properties of the DLC were studied using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. Atomic force microscope (AFM), transmission electron microscopy (TEM), nano-indentation and nano-scratch tests. The amount of W in films gets increases with increasing target bias voltage and most of the incorporated W reacts with carbon to form WC nanoclusters. Using TEM and FFT pattern, it was found that spherical shaped WC nanoclusters were uniformly dispersed in the DLC matrix and attains hexagonal (W2C) crystalline structure at higher W concentration. On the other hand, the incorporation of tungsten led to increase the formation of C-sp(2) hybridized bonding in DLC network and which is reflected in the hardness and elastic modulus of W-DLC films. Moreover, W-DLC films show very low friction coefficient and increased adhesion to the substrate than the DLC film, which could be closely related to its unique nanostructure of the W incorporated thin films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chips produced by turning a commercial purity magnesium billet were cold compacted and then hot extruded at four different temperatures: 250, 300, 350, and 400 degrees C. Cast billets, of identical composition, were also extruded as reference material. Chip boundaries, visible even after 49: 1 extrusion at 400 degrees C, were observed to suppress grain coarsening. Although 250 degrees C extruded chip-consolidated product showed early onset of yielding and lower ductility, fully dense material (extruded at 400 degrees C) had nearly 40% reduction in grain size with 22% higher yield strength and comparable ductility as that of the reference. The study highlights the role of densification and grain refinement on the compression behavior of chip consolidated specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of Ni-49 at.% Ti were deposited by DC magnetron sputtering on silicon substrates at 300 degrees C. The as-deposited amorphous films were annealed at a vacuum of 10(-6) mbar at various temperatures between 300 and 650 degrees C to study the effect of annealing on microstructure and mechanical properties. The as-deposited films showed partial crystallization on annealing at 500 degrees C. At 500 degrees C, a distinct oxidation layer, rich in titanium but depleted in Ni, was seen on the film surface. A gradual increase in thickness and number of layers of various oxide stoichiometries as well as growth of triangular shaped reaction zones were seen with increase in annealing temperature up to 650 degrees C. Nanoindentation studies showed that the film hardness values increase with increase in annealing temperature up to 600 degrees C and subsequently decrease at 650 degrees C. The results were explained on the basis of the change in microstructure as a result of oxidation on annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, asymmetric rolling was carried out for incorporating a shear component during the rolling at different temperatures, and was compared with conventional (symmetric) rolling. The microstructures were investigated using electron back-scatter diffraction (EBSD). The strain incorporated was compared with the help of grain orientation spread (GOS). GOS was eventually used as a criterion to partition the microstructure for separating the deformed and the dynamically recrystallized (DRX) grains. The texture of the partitioned DRX grains was shifted by similar to 30 degrees along the c-axis from the deformed grains. The mechanism of dynamic recrystallization (DRX) has been identified as continuous dynamic recovery and recrystallization (CDRR). The partitioned deformed grains for the higher temperature rolled specimens exhibited a texture similar to the room temperature rolled specimen. The asymmetric rolling introduces a shear component which shifts the texture fibre by similar to 5-10 degrees from the conventional rolling texture. This led to an increase in ductility with little compromise on strength. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports the effect of the addition of small amount of Al on the microstructure and properties of HITPERM class rapidly solidified Fe44Co44Zr7B4Cu1 glassy alloy. Using three dimensional atom probe measurements we present evidence for the formation of Cu clusters on annealing in the metallic glass matrix of the Al containing alloy Fe43Co43Al2Zr7B4Cu1. Such clusters are otherwise absent in the parent alloy under similar conditions. The Cu clusters provides heterogeneous nucleation sites for the formation of bcc alpha'-FeCo phase leading to an increase in number density of this nanocrystalline phase and thereby enhancing the magnetic properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of microstructure and texture gradient in warm Accumulative Roll Bonded Cu-Cu multilayer has been studied. Grain size distribution is multimodal and exhibits variation from middle to surface layer. Evolution of texture is largely influenced by shear, in addition to rolling deformation. This leads to the formation of a texture comprising of high fraction of Brass and rolling direction-rotated cube components. Partial recrystallization was observed. Deformed and recrystallized grains were separated using a partition scheme based on grain orientation spread and textures were analyzed for both the partition. Retention of deformation texture components in recrystallized grains suggests the mechanism of recrystallization as continuous recrystallization. Shear deformation plays an important role in grain refinement through continuous recrystallization. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Othman et al. (Intermetallics 2012;22:1-6) recently published a manuscript on ``Effects of current density on the formation and microstructure of Sn-9Zn, Sn-8Zn-3Bi and Sn-3Ag-0.5Cu solder joints''. We found problems in calculation of diffusion parameters. Even the comment on the formation of Cu5Zn8 instead of Cu6Sn5 is not correct. In this comment, we have explained the correct procedure to calculate the diffusion coefficients. Further, we have also explained the reason for the formation of Cu5Zn8 instead of Cu6Sn5 in the Cu/Sn-9Zn system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, severe plastic deformation (SPD) of Ti-bearing interstitial-free steel was carried out by multi-axial forging (MAF) technique. The grain refinement achieved was comparable to that by other SPD techniques. A considerable heterogeneity was observed in the microstructure and texture. Texture of multi-axially forged steels has been evaluated and reported for the first time. The material exhibited a six-fold increase in the yield strength after four cycles of MAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of a nonionic surfactant and water pH were varied in an oil-in-water emulsion to minimize the friction coefficient between a steel ball sliding on a steel flat. At a surfactant concentration near the CMC (critical micelle concentration) the oil droplet size was found to be minimum. In this paper we study the microstructure of the surfactant molecules self-assembled on the steel substrate in water to comment on the ability of the surfactant aggregate to attract and retain oil. We find that a near semicylindrical hemimiceller microstructure with hydrocarbon tails projecting into bulk water as obtained at CMC in near neutral water is best able to capture and retain oil in yielding a low coefficient of friction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Plasma Nitriding was carried out at a temperature of 570 degrees C on nuclear grade austenitic stainless steel type AISI 316 LN (316LN SS) in a gas mixture of 20% N-2-80% H-2 to improve the surface hardness and thereby sliding wear resistance. The Plasma Nitride (PN) treated surface has been characterized by Vickers microhardness measurements, Scanning Electron Microscopic (SEM) examination, X-ray Diffraction (XRD) and sliding wear assessment. The average thickness of the PN layer was found to be 70 mu m. Microhardness measurements showed a significant increase in the hardness from 210 HV25g (unnitrided sample) to 1040 HV25g (Plasma Nitrided sample). The XRD reveals that PN layer consists of CrN, Fe4N and Fe3N phases along with austenite phase. The tribological parameters such as the friction coefficient and wear mechanism have been evaluated at ambient conditions for PN treated ring (PN ring) vs. ASTM A453 grade 660 pin (ASTM pin), PN ring vs. Nickel based alloy hard faced pin (Colmonoy pin), PN ring vs. 316LN SS pin and 316LN SS ring vs. 316LN SS pin. The wear tracks have been analyzed by SEM, Energy Dispersive X-ray Analysis (EDX) and Optical Profilometry. The untreated 316LN SS ring vs. 316LN SS pin produced severe wear and was characterized by a combination of delamination and adhesion wear mechanism, whereas wear mechanism of the PN rings reveals mild abrasion and a transfer layer from pin materials. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the evolution of microstructure during solidification of A356 alloy under stirring is performed experimentally in a high temperature concentric viscometer. The stirring during solidification results a semisolid slurry in the annular space between the cylinders. This slurry is removed periodically during processing using a vacuum removal quartz tube and quenched in water for micrograph analysis. From the micrograph analysis, the shape, stacking arrangement and corresponding microstructural evolution of the suspended primary particles in the slurry are studied. The work also predicts the fraction of solid present in the extracted slurry. Finally, the effect of microstructure and the solid-fraction on the slurry viscosity is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-layered materials have been made from Cu-Fe with approximately equal volume fractions using the Accumulated Roll Bonding (ARB) technique with less than 1 μm thickness of the individual layers. The so-obtained multi-layers have been subjected to deformation by cold rolling to 25, 50, 75, 87 and 93% reduction in thickness. A detailed characterization has been carried out using X-ray diffraction (line profile analysis and texture measurement) and electron (scanning and transmission) microscopy. It has been found that Fe layers are disintegrated whereas Cu retains its continuity within a layer. Microstructural Characterization from X-Ray Line profile Analysis (XRDLPA) through Variance Method reveals that large amount of strain is initially carried by Cu layers during deformation. In the Cu-Fe layer, the texture is comparatively weaker in Cu layer and strong in Fe layers. Brass Component increases up to 75% reduction and then decreases, while the ratio of Cu/S and Bs/S remains almost constant through out the deformation. After 50% reduction, dynamic recovery is predominant as indicated by the increase in the amount of low angle grain boundaries and decrease in dislocation density. The presence of R component indicates continuous dynamic recovery and recrystallization (CDRR) at the advanced stage of deformation.