931 resultados para medicinal component
Resumo:
We present a generic study of inventory costs in a factory stockroom that supplies component parts to an assembly line. Specifically, we are concerned with the increase in component inventories due to uncertainty in supplier lead-times, and the fact that several different components must be present before assembly can begin. It is assumed that the suppliers of the various components are independent, that the suppliers' operations are in statistical equilibrium, and that the same amount of each type of component is demanded by the assembly line each time a new assembly cycle is scheduled to begin. We use, as a measure of inventory cost, the expected time for which an order of components must be held in the stockroom from the time it is delivered until the time it is consumed by the assembly line. Our work reveals the effects of supplier lead-time variability, the number of different types of components, and their desired service levels, on the inventory cost. In addition, under the assumptions that inventory holding costs and the cost of delaying assembly are linear in time, we study optimal ordering policies and present an interesting characterization that is independent of the supplier lead-time distributions.
Resumo:
The different formalisms for the representation of thermodynamic data on dilute multicomponent solutions are critically reviewed. The thermodynamic consistency of the formalisms are examined and the interrelations between them are highlighted. The options are constraints in the use of the interaction parameter and Darken's quadratic formalisms for multicomponent solutions are discussed in the light of the available experimental data. Truncatred Maclaurin series expansion is thermodynamically inconsistent unless special relations between interaction parameters are invoked. However, the lack of strict mathematical consistency does not affect the practical use of the formalism. Expressions for excess partial properties can be integrated along defined composition paths without significant loss of accuracy. Although thermodynamically consistent, the applicability of Darken's quadratic formalism to strongly interacting systems remains to be established by experiment.
Resumo:
The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced. As the first step, the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure. The microstructure depended on several process parameters such as stirring intensity, stirring frequency, cooling rate, and melt initial superheat. Through a series of computational studies and controlled experiments, a set of process parameters were identified to produce the best microstructures. Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components. The reheating process was characterized for various reheating cycles using a vertical-type reheating machine. The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet, and the heating was continued until the liquid fraction reached about 50%. These parameters were determined with the help of a computational fluid dynamics (CFD) model of die filling and solidification of the semisolid alloy. The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine. The results show that the castings are near net shape, free from porosity, good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.
Resumo:
Two identities involving quarter-wave plates and half-wave plates are established. These are used to improve on an earlier gadget involving four wave plates leading to a new gadget involving just three plates, a half-wave plate and two quarter-wave plates, which can realize all SU(2) polarization transformations. This gadget is shown to involve the minimum number of quarter-wave and half-wave plates. The analysis leads to a decomposition theorem for SU (2) matrices in terms of factors which are symmetric fourth and eighth roots of the identity.
Resumo:
A complete solution to the fundamental problem of delineation of an ECG signal into its component waves by filtering the discrete Fourier transform of the signal is presented. The set of samples in a component wave is transformed into a complex sequence with a distinct frequency band. The filter characteristics are determined from the time signal itself. Multiplication of the transformed signal with a complex sinusoidal function allows the use of a bank of low-pass filters for the delineation of all component waves. Data from about 300 beats have been analysed and the results are highly satisfactory both qualitatively and quantitatively.
Resumo:
A simple, non-iterative method for component wave delineation from the electrocardiogram (ECG) is derived by modelling its discrete cosine transform (DCT) as a sum of damped cosinusoids. Amplitude, phase, damping factor and frequency parameters of each of the cosinusoids are estimated by the extended Prony method. Different component waves are represented by non-overlapping clusters of model poles in the z plane and thus a component wave is derived by the addition of the inverse transformed (IDCT) impulse responses of the poles in the cluster. Akaike's information criterion (AIC) is used to determine the model order. The method performed satisfactory even in the presence of artifacts. The efficacy of the method is illustrated by analysis of continuous strips of ECG data.
Resumo:
Gold(I)-based drugs have been used successfully for the treatment of rheumatoid arthritis (RA) for several years. Although the exact mechanism of action of these gold(I) drugs for RA has not been clearly established, the interaction of these compounds with mammalian enzymes has been extensively studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with mammalian proteins that contain cysteine (Cys) and selenocysteine (Sec) residues. Owing to the higher affinity of gold(I) towards sulfur and selenium, gold(I) drugs rapidly react with the activated cysteine or selenocysteine residues of the enzymes to form protein-gold(I)-thiolate or protein-gold(I)-selenolate complexes. The formation of stable gold(I)-thiolate/selenolate complexes generally lead to inhibition of the enzyme activity. The gold-thiolate/selenolate complexes undergo extensive ligand exchange reactions with other nucleophiles and such ligand exchange reactions alter the inhibitory effects of gold(I) complexes. Therefore, the effect of gold(I) compounds on the enzymatic activity of cysteine-or selenocysteine-containing proteins may play important roles in RA. The interaction of gold(I) compounds with different enzymes and the biochemical mechanism underlying the inhibition of enzymatic activities may have broad medicinal implications for the treatment of RA.
Resumo:
The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.
Resumo:
p-Hydroxyphenylacetate-3-hydroxylase, an inducible enzyme isolated from the soil bacterium Pseudomonas putida, catalyzes the conversion of p-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. The enzyme requires two protein components: a flavoprotein and a colorless protein referred to as the coupling protein. The flavoprotein alone in the presence of p-hydroxyphenylacetate and substrate analogs catalyzes the wasteful oxidation of NADH with the stoichiometric generation of H2O2. A 1:1 complex of the flavoprotein and coupling protein is required for stoichiometric product formation. Such complex formation also eliminates the nonproductive NADH oxidase activity of the flavoprotein. A new assay measuring the product formation activity of the enzyme was developed using homoprotocatechuate-2,3-dioxygenase, as monitoring the oxidation of NADH was not sufficient to demonstrate enzyme activity. The coupling protein does not seem to have any redox center in it. Thus, this 2-component flavin hydroxylase resembles the other aromatic hydroxylases in that the only redox chromophore present is FAD.
Resumo:
Aim of the study: The medicinal plants are integral source of easily available remedy used in rural healthcare system. This study was conducted among three major ethnic groups namely the Nocte, the Nyishi and the Adi in the Eastern Himalayan region of Arunachal Pradesh to evaluate their comparative knowledge on medicinal plants. Materials and methods: The three remote districts of Arunachal Pradesh namely the Tirap, the Dibang Valley and the Papum Pare were surveyed through interviewing of randomly selected 237 participants using semi-structured questionnaire and regular field visits to selected districts. Results: We recorded the traditional use of 74 medicinal plants species belonging to 41 taxonomic plant families used for treating a total of 25 different diseases/ailments. The informant consensus factor (ICF) values demonstrated that local people tend to agree more with each other in terms of the plants used to treat malaria (0.71), jaundice (0.62), urological problems (0.56), dermatological disorders (0.45), pain (0.30), and respiratory disorder (0.33), and while the general health (0.15) and gastro-intestinal disorders category (0.28) were found low ICF values. Conclusion: Of the total 74 species recorded, the highest number of medicinal plants (36 species) was reported from the Adi of Lower Dibang Valley followed by the Nocte of the Tirap (25 species) and the Nyishi ethnic groups of Papum Pare districts (13 species). In the present study, we found that the men, elder people and illiterate ones had better knowledge on medicinal plants as compared to women, younger and literate people. Findings of this documentation study can be used as an ethnopharmacological basis for selecting plants for future phytochemical and pharmaceutical studies. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
The kinetics of the processes in facing targets sputtering of multicomponent oxide films is presented. The novel configuration of the process exhibits an enhanced ionization efficiency. Discharge diagnostics performed using optical emission spectroscopy revealed strong dependence of plasma parameters on process conditions. Numerical simulation based on thermalization and diffusion of sputtered atoms has been performed to estimate the transport efficiency in off-axis mode. Composition, structure and epitaxial quality of YBa2Cu3O7-x films prepared was found to be strongly dependent on atomic flux ratios (of Cu/Y and Ba/Y) arriving at the substrate, resputtering effect and phase stability of YBa2Cu3O7-x These studies have been shown to be useful in understanding the complex processes that occur in sputtering of multicomponent films. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A series of 2-haloethoxyethyl cholesteryl ethers has been synthesized. Each material shows attractive liquid-crystalline properties as revealed by differential scanning calorimetry, polarizing microscopy, and temperature-dependence of selective reflection characteristic of the cholesteric mesophase. These are interesting examples of simple, nonpolymeric, single component systems that show the cholesteric mesophase at room temperature.