874 resultados para material to use
Resumo:
While using the brand names seems like a trivial issue at the outset, using these names is inherently problematic. Cardiovascular drugs remain the most commonly prescribed drugs by the physicians. The junior doctors are likely to introject practices of their seniors and consequently to reciprocate from the experiences learnt from their preceptors. Using the generic names may be one way to facilitate prescription of the generic drugs who have a better cost profile and similar efficacy than the more expensive branded drugs. In this editorial, we have outlined several arguments to suggest the importance of using the generic names in academic discussions and clinical documentation.
Resumo:
This paper describes, with pictures, how to use voting machines and how to cast your vote.
Resumo:
A workbook-style reflection exercise prompts readers to consider potential uses of hip-hop in their own library instruction in a culturally responsive manner.
Resumo:
Mollusk shells are often found in archeological sites, given their great preservation potential and high value as a multipurpose resource. They are often the only available material to use for radiocarbon dating, due to a lack of well-preserved bones in many archeological sites, especially for the key period of the Middle to Upper Paleolithic transition. However, radiocarbon dating on mollusk shells is often regarded as less reliable compared to bones, wood, or charcoals due to the various factors influencing their radiocarbon content (e.g., Isotope fractionation, marine reservoir effect etc.). For the development of more accurate chronologies using shells, it is fundamental to continue improving the precision of the techniques applied, as has been done for other materials (wood and bones). Thus, improving the chemical pretreatment on mollusk shells might allow researchers to obtain more reliable radiocarbon determinations allowing for the construction of new radiocarbon chronologies in archeological sites where so far it has not been possible. Furthermore, mollusk shells can provide information on the climatic and environmental variables present during their growth. Using shells for paleoclimatic reconstruction adds more evidence helpful for the interpretation of scenarios of human migration, adaptation, and behavior. Standard methods for both radiocarbon and stable isotope studies use the carbonate fraction of the shell. However, being biogenic structures, mollusk shells also consist of a minor organic fraction. The shell organic matrix has an important role in the formation of the calcium carbonate structure and is still not fully understood. This thesis explores the potential of using the shell organic matrix for radiocarbon dating and paleoenvironmental studies. The results of the work performed for this thesis represent a starting point for future research to build on, and further develop the approach and methodology proposed here.
Resumo:
O presente trabalho tem como objetivo o cálculo e desenvolvimento de um projecto estrutural de um edifício público. O edifício em questão será construído em Camama, Angola. Ao longo deste trabalho são apresentadas as diferentes etapas necessárias para a conceção do projeto estrutural de um edifício em betão armado. As opções consideradas na realização deste projeto e as respetivas justificações, podem ser encontradas ao longo deste documento. Estas são reforçadas através da apresentação de plantas estruturais com os seus elementos e os cálculos considerados necessários. Este trabalho foi elaborado com o apoio do programa de cálculo ROBOT Structural Analysis para a caracterização e análise das ações atuantes. Apesar da localização do edifício ser em Angola, as ações e as bases de projeto são definidas de acordo com as normas portuguesas. A utilização destas normas foi possível através de referências comuns a ambos os países, bem como algumas considerações tendo em conta as condições de construção em Luanda. Para a definição do projeto estrutural foram fornecidas as plantas de arquitetura, cortes e alçados do edifício. Estas plantas apresentam os respetivos materiais não estruturais, a utilizar após a sua construção. Em adição foi fornecida uma sondagem geotécnica do terreno de construção.
Resumo:
In recent years there has been a growing interest in developing news solutions for more ecologic and efficient construction, including natural, renewable and local materials, thus contributing in the search for more efficient, economic and environmentally friendly construction. Several authors have assessed the possibility of using various agricultural sub products or wastes, as part of the effort of the scientific community to find alternative and more ecologic construction materials. Corn cob is an agricultural waste from a very important worldwide crop. Natural glues are made from natural materials, non-mineral, that can be used as such or after some modifications to achieve the behaviour and performance required. Two examples of these natural glues are casein and wheat flour-based glues that were used in the present study. Boards with different compositions were manufactured, having as variables the type of glue, the dimension of the corn cob particles and the features of the pressing process. The tests boards were characterized with physical and mechanical tests, such as thermal conductivity (λ) with a ISOMET 2104 and 60 mm diameter contact probe, density (ρ) based on EN 1602:2013, surface hardness (SH) with a PCE Shore A durometer, surface resistance (SR) with a PROCEQ PT pendular sclerometer, bending behaviour (σ) based on EN 12089:2013, compression behaviour (σ10) based on EN 826:2013 and resilience (R) based on EN 1094-1:2008, with a Zwick Rowell bending equipment with 2 kN and 50 kN load cells (Fig. 1), dynamic modulus of elasticity (Ed) with a Zeus Resonance Meter equipment (Fig. 5) based on NP EN 14146:2006 and water vapour permeability (δ) based on EN 12086:2013. The various boards produced were characterized according to the tests and the ones with the best results were C8_c8 (casein glue, grain size 2,38-4,76 mm, cold pressing for 8 hours), C8_c4 (casein glue, grain size 2,38-4,76 mm, cold pressing for 4 hours), F8_h0.5 (wheat flour glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours), FEV8_h0.5 (wheat flour, egg white and vinegar glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours) and FEVH68_c4 (wheat flour, egg white, vinegar and 6 g of sodium hydroxide glue, grain size 2,38-4,76 mm, cold pressing for 4 hours). Taking into account the various boards produced and respective test results the type of glue and the pressure and pressing time are very important factors which strongly influence the final product. The results obtained confirmed the initial hypotheses that these boards have potential as a thermal and, eventually, acoustic insulation material, to use as coating or intermediate layer on walls, floors or false ceilings. This type of board has a high mechanical resistance when compared with traditional insulating materials.The integrity of these boards seems to be maintained even in higher humidity environments. However, due to biological susceptibility and sensitivity to water, they would be more adequate for application in dry interior conditions.
Resumo:
En aquest treball es pretén obtenir material porós de PDLLA, amb ús potencial com a bastida en enginyeria tissular, mitjançant l’ús de freó R-134a com a fluid escumant. Per aquest motiu, s’ha realitzat un estudi on es valoren diferents variables com la temperatura de procés, la pressió de treball i l’ús de N2 en la despressurització que poden modificar la microestructura final de la bastida.
Resumo:
Màster en Nanociència i Nanotecnologia
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A plan to identify the individual farm upon which hogs reaching markets are produced has been developed in connection with the efforts toward eradicating tuberculosis among farm animals. While primarily intended as a means of tracing back to determine sources of disease infection, the system of tattooing which is being developed has other significant possibilities. With the growing emphasis on quality products in the market, it is only fair that the producers of high quality commodities receive the premiums paid by processors and consumers. Health of farm animals is a quality factor. The producer of healthy hogs should be rewarded. Likewise, the producer of diseased hogs profits from knowledge that his animals are infected and can institute efforts to control that source fo loss. This 1928 extension circular covers what each letter of a tattoo stands for, where it is to be placed on an animal, and material used in tattooing.
Resumo:
El objetivo de esta tesis doctoral es la investigación del nuevo concepto de pinzas fotovoltaicas, es decir, del atrapamiento, ordenación y manipulación de partículas en las estructuras generadas en la superficie de materiales ferroeléctricos mediante campos fotovoltaicos o sus gradientes. Las pinzas fotovoltaicas son una herramienta prometedora para atrapar y mover las partículas en la superficie de un material fotovoltaico de una manera controlada. Para aprovechar esta nueva técnica es necesario conocer con precisión el campo eléctrico creado por una iluminación específica en la superficie del cristal y por encima de ella. Este objetivo se ha dividido en una serie de etapas que se describen a continuación. La primera etapa consistió en la modelización del campo fotovoltaico generado por iluminación no homogénea en substratos y guías de onda de acuerdo al modelo de un centro. En la segunda etapa se estudiaron los campos y fuerzas electroforéticas y dielectroforéticas que aparecen sobre la superficie de substratos iluminados inhomogéneamente. En la tercera etapa se estudiaron sus efectos sobre micropartículas y nanopartículas, en particular se estudió el atrapamiento superficial determinando las condiciones que permiten el aprovechamiento como pinzas fotovoltaicas. En la cuarta y última etapa se estudiaron las configuraciones más eficientes en cuanto a resolución espacial. Se trabajó con distintos patrones de iluminación inhomogénea, proponiéndose patrones de iluminación al equipo experimental. Para alcanzar estos objetivos se han desarrollado herramientas de cálculo con las cuales obtenemos temporalmente todas las magnitudes que intervienen en el problema. Con estas herramientas podemos abstraernos de los complicados mecanismos de atrapamiento y a partir de un patrón de luz obtener el atrapamiento. Todo el trabajo realizado se ha llevado a cabo en dos configuraciones del cristal, en corte X ( superficie de atrapamiento paralela al eje óptico) y corte Z ( superficie de atrapamiento perpendicular al eje óptico). Se ha profundizado en la interpretación de las diferencias en los resultados según la configuración del cristal. Todas las simulaciones y experimentos se han realizado utilizando como soporte un mismo material, el niobato de litio, LiNbO3, con el f n de facilitar la comparación de los resultados. Este hecho no ha supuesto una limitación en los resultados pues los modelos no se limitan a este material. Con respecto a la estructura del trabajo, este se divide en tres partes diferenciadas que son: la introducción (I), la modelización del atrapamiento electroforético y dielectroforético (II) y las simulaciones numéricas y comparación con experimentos (III). En la primera parte se fijan las bases sobre las que se sustentarán el resto de las partes. Se describen los efectos electromagnéticos y ópticos a los que se hará referencia en el resto de los capítulos, ya sea por ser necesarios para describir los experimentos o, en otros casos, para dejar constancia de la no aparición de estos efectos para el caso en que nos ocupa y justificar la simplificación que en muchos casos se hace del problema. En esta parte, se describe principalmente el atrapamiento electroforético y dielectroforético, el efecto fotovoltaico y las propiedades del niobato de litio por ser el material que utilizaremos en experimentos y simulaciones. Así mismo, como no debe faltar en ninguna investigación, se ha analizado el state of the art, revisando lo que otros científicos del campo en el que estamos trabajando han realizado y escrito con el fin de que nos sirva de cimiento a la investigación. Con el capítulo 3 finalizamos esta primera parte describiendo las técnicas experimentales que hoy en día se están utilizando en los laboratorios para realizar el atrapamiento de partículas mediante el efecto fotovoltaico, ya que obtendremos ligeras diferencias en los resultados según la técnica de atrapamiento que se utilice. En la parte I I , dedicada a la modelización del atrapamiento, empezaremos con el capítulo 4 donde modelizaremos el campo eléctrico interno de la muestra, para a continuación modelizar el campo eléctrico, los potenciales y las fuerzas externas a la muestra. En capítulo 5 presentaremos un modelo sencillo para comprender el problema que nos aborda, al que llamamos Modelo Estacionario de Separación de Carga. Este modelo da muy buenos resultados a pesar de su sencillez. Pasamos al capítulo 6 donde discretizaremos las ecuaciones que intervienen en la física interna de la muestra mediante el método de las diferencias finitas, desarrollando el Modelo de Distribución de Carga Espacial. Para terminar esta parte, en el capítulo 8 abordamos la programación de las modelizaciones presentadas en los anteriores capítulos con el fn de dotarnos de herramientas para realizar las simulaciones de una manera rápida. En la última parte, III, presentaremos los resultados de las simulaciones numéricas realizadas con las herramientas desarrolladas y comparemos sus resultados con los experimentales. Fácilmente podremos comparar los resultados en las dos configuraciones del cristal, en corte X y corte Z. Finalizaremos con un último capítulo dedicado a las conclusiones, donde resumiremos los resultados que se han ido obteniendo en cada apartado desarrollado y daremos una visión conjunta de la investigación realizada. ABSTRACT The aim of this thesis is the research of the new concept of photovoltaic or optoelectronic tweezers, i.e., trapping, management and manipulation of particles in structures generated by photovoltaic felds or gradients on the surface of ferroelectric materials. Photovoltaic tweezers are a promising tool to trap and move the particles on the surface of a photovoltaic material in a monitored way. To take advantage of this new technique is necessary to know accurately the electric field created by a specifc illumination in the crystal surface and above it. For this purpose, the work was divided into the stages described below. The first stage consisted of modeling the photovoltaic field generated by inhomogeneous illumination in substrates and waveguides according to the one-center model. In the second stage, electrophoretic and dielectrophoretic fields and forces appearing on the surface of substrates and waveguides illuminated inhomogeneously were studied. In the third stage, the study of its effects on microparticles and nanoparticles took place. In particular, the trapping surface was studied identifying the conditions that allow its use as photovoltaic tweezers. In the fourth and fnal stage the most efficient configurations in terms of spatial resolution were studied. Different patterns of inhomogeneous illumination were tested, proposing lightning patterns to the laboratory team. To achieve these objectives calculation tools were developed to get all magnitudes temporarily involved in the problem . With these tools, the complex mechanisms of trapping can be simplified, obtaining the trapping pattern from a light pattern. All research was carried out in two configurations of crystal; in X section (trapping surface parallel to the optical axis) and Z section (trapping surface perpendicular to the optical axis). The differences in the results depending on the configuration of the crystal were deeply studied. All simulations and experiments were made using the same material as support, lithium niobate, LiNbO3, to facilitate the comparison of results. This fact does not mean a limitation in the results since the models are not limited to this material. Regarding the structure of this work, it is divided into three clearly differentiated sections, namely: Introduction (I), Electrophoretic and Dielectrophoretic Capture Modeling (II) and Numerical Simulations and Comparison Experiments (III). The frst section sets the foundations on which the rest of the sections will be based on. Electromagnetic and optical effects that will be referred in the remaining chapters are described, either as being necessary to explain experiments or, in other cases, to note the non-appearance of these effects for the present case and justify the simplification of the problem that is made in many cases. This section mainly describes the electrophoretic and dielectrophoretic trapping, the photovoltaic effect and the properties of lithium niobate as the material to use in experiments and simulations. Likewise, as required in this kind of researches, the state of the art have been analyzed, reviewing what other scientists working in this field have made and written so that serve as a foundation for research. With chapter 3 the first section finalizes describing the experimental techniques that are currently being used in laboratories for trapping particles by the photovoltaic effect, because according to the trapping technique in use we will get slightly different results. The section I I , which is dedicated to the trapping modeling, begins with Chapter 4 where the internal electric field of the sample is modeled, to continue modeling the electric field, potential and forces that are external to the sample. Chapter 5 presents a simple model to understand the problem addressed by us, which is called Steady-State Charge Separation Model. This model gives very good results despite its simplicity. In chapter 6 the equations involved in the internal physics of the sample are discretized by the finite difference method, which is developed in the Spatial Charge Distribution Model. To end this section, chapter 8 is dedicated to program the models presented in the previous chapters in order to provide us with tools to perform simulations in a fast way. In the last section, III, the results of numerical simulations with the developed tools are presented and compared with the experimental results. We can easily compare outcomes in the two configurations of the crystal, in section X and section Z. The final chapter collects the conclusions, summarizing the results that were obtained in previous sections and giving an overview of the research.
Resumo:
Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann`s yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) center dot A H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves an empirical study of how vodcasts (video-podcasts) can be used to enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submitted an individual laboratory report for the assessment of the structures laboratory. The data collection consisted of a questionnaire completed by the students, follow-up semi-structured interviews and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that most of the students who have not fully grasped the theory after the practical, managed to gain the required knowledge by viewing the vodcasts. According to their feedbacks, the students felt that they have control over how to use the material and to view it as many times as they wish. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by their explanations in their reports, and was illustrated by the approach they took to explicate the results of their experimental work. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and are beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.
Resumo:
Current policies on education to visually impaired point for a growing trend of including students with special educational needs in regular schools. However, most often this inclusion is not accompanied by an appropriate professional trained or infrastructure, which has been presented as a big problem for regular school teachers who have students with visual impairments in their classroom. Based on this situation, the Group of Extension in Tactile Cartography from UNESP - University of the State of São Paulo - Campus de Rio Claro - SP - Brazil has been developing educational material of geography and cartography to blind students at a special school. Among the materials developed in this study highlight the development of graphics and board games provided with sound capabilities through MAPAVOX, software developed in partnership with UFRJ - Federal University from Rio de Janeiro - RJ - Brazil. Through this software, sound capabilities can be inserted into built materials, giving them a multi-sensory character. In most cases the necessary conditions for building specific materials to students with visual impairments is expensive and beyond the reach of features from a regular school, so the survey sought to use easy access and low cost materials like Cork, leaf aluminum, material for fixing and others. The development of these materials was supported by preparation in laboratory and its subsequent test through practices involving blind students. The methodology used on the survey is based on qualitative research and non comparative analysis of the results. In other words, the material is built based on the special students perception and reality construction, not being mere adaptations of visual materials, but a construction focused on the reality of the visually impaired. The results proved were quite successful as the materials prepared were effective on mediating the learning process of students with disabilities. Geographical and cartographic concepts were seized by the students through the technology used, associated with the use of materials that took into account in its building process the perception of the students.
Resumo:
The objective of the study was to report the prevention of facial reinjury of a volleyball player using a custom-made protective facial shield. A custom-made protective partial facial shield was fabricated using polymethylmethacrylate and was fitted with a soft lining material to provide additional comfort and protection to the injured area. Facial protection provides greater security against possible facial injuries and allows injured areas to recover during sports practice.