986 resultados para material failure
Resumo:
Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10 years). Tearing and calcification of the leaflets usually cause failure of these valves as a consequence of high tensile and bending stresses borne on the material. The primary purpose of this study was to explore the possibilities of a new polymer composite to be used as synthetic tri-leaflet heart valve material. This composite was comprised of polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears and perforations might result from fiber-reinforced leaflets reducing high stresses on the leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite were compared with those of an implant-approved polyurethane (PU) for cardiovascular applications. Results show that the reinforcement of Quatromer with PP fibers improves both its static and dynamic properties as compared to the PU. Hence, this composite has the potential to be a more suitable material for synthetic tri-leaflet heart valves.
Resumo:
This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.
Resumo:
A large series of laboratory ice crushing experiments was performed to investigate the effects of external boundary condition and indenter contact geometry on ice load magnitude under crushing conditions. Four boundary conditions were considered: dry cases, submerged cases, and cases with the presence of snow and granular ice material on the indenter surface. Indenter geometries were a flat plate, wedge shaped indenter, (reverse) conical indenter, and spherical indenter. These were impacted with artificially produced ice specimens of conical shape with 20° and 30° cone angles. All indenter – ice combinations were tested in dry and submerged environments at 1 mm/s and 100 mm/s indentation rates. Additional tests with the flat indentation plate were conducted at 10 mm/s impact velocity and a subset of scenarios with snow and granular ice material was evaluated. The tests were performed using a material testing system (MTS) machine located inside a cold room at an ambient temperature of - 7°C. Data acquisition comprised time, vertical force, and displacement. In several tests with the flat plate and wedge shaped indenter, supplementary information on local pressure patterns and contact area were obtained using tactile pressure sensors. All tests were recorded with a high speed video camera and still photos were taken before and after each test. Thin sections were taken of some specimens as well. Ice loads were found to strongly depend on contact condition, interrelated with pre-existing confinement and indentation rate. Submergence yielded higher forces, especially at the high indentation rate. This was very evident for the flat indentation plate and spherical indenter, and with restrictions for the wedge shaped indenter. No indication was found for the conical indenter. For the conical indenter it was concluded that the structural restriction due to the indenter geometry was dominating. The working surface for the water to act was not sufficient to influence the failure processes and associated ice loads. The presence of snow and granular ice significantly increased the forces at the low indentation rate (with the flat indentation plate) that were higher compared to submerged cases and far above the dry contact condition. Contact area measurements revealed a correlation of higher forces with a concurrent increase in actual contact area that depended on the respective boundary condition. In submergence, ice debris constitution was changed; ice extrusion, as well as crack development and propagation were impeded. Snow and granular ice seemed to provide additional material sources for establishing larger contact areas. The dry contact condition generally had the smallest real contact area, as well as the lowest forces. The comparison of nominal and measured contact areas revealed distinct deviations. The incorporation of those differences in contact process pressures-area relationships indicated that the overall process pressure was not substantially affected by the increased loads.
Resumo:
Peer reviewed
Resumo:
AIMS: Diagnosis of soft tissue sarcomas can be difficult. It can be aided by detection of specific genetic aberrations in many cases. This study assessed the utility of a molecular genetics/cytogenetics service as part of the routine diagnostic service at the Royal Marsden Hospital. METHODS: A retrospective audit was performed over a 15-month period to evaluate the diagnostic usefulness for soft tissue sarcomas with translocations of fluorescence in situ hybridisation (FISH) and reverse-transcriptase PCR (RT-PCR) in paraffin-embedded (PE) material. Results were compared with histology, and evaluated. RESULTS: Molecular investigations were performed on PE material in 158 samples (total 194 RT-PCR and 174 FISH tests), of which 85 were referral cases. Synovial sarcoma, Ewing sarcoma and low-grade fibromyxoid sarcoma were the most commonly tested tumours. Myxoid liposarcoma showed the best histological and molecular concordance, and alveolar rhabdomyosarcoma showed the best agreement between methods. FISH had a higher sensitivity for detecting tumours (73%, compared with 59% for RT-PCR) with a better success rate than RT-PCR, although the latter was specific in identifying the partner gene for each fusion. In particular, referral blocks in which methods of tissue fixation and processing were not certain resulted in higher RT-PCR failure rates. CONCLUSIONS: FISH and RT-PCR on PE tissue are practical and effective ancillary tools in the diagnosis of soft tissue sarcomas. They are useful in confirming doubtful histological diagnoses and excluding malignant diagnoses. PCR is less sensitive than FISH, and the use of both techniques is optimal for maximising the detection rate of translocation-positive sarcomas.
Resumo:
Failure analysis has been, throughout the years, a fundamental tool used in the aerospace sector, supporting assessments performed by sustainment and design engineers mainly related to failure modes and material suitability. The predicted service life of aircrafts often exceeds 40 years, and the design assured life rarely accounts for all in service loads and in service environmental menaces that aging aircrafts must deal with throughout their service lives. From the most conservative safe-life conceptual design approaches to the most recent on-condition based design approaches, assessing the condition and predicting the failure modes of components and materials are essential for the development of adequate preventive and corrective maintenance actions as well as for the accomplishment and optimization of scheduled maintenance programs of aircrafts. Moreover, as the operational conditions of aircrafts may vary significantly from operator to operator (especially in military aircraft), it is necessary to access if the defined maintenance programs are adequate to guarantee the continuous reliability and safe usage of the aircrafts, preventing catastrophic failures which bear significant maintenance and repair costs, and that may lead to the loss of human lives. Thus being, failure analysis and material investigations performed as part of aircraft accidents and incidents investigations arise as powerful tools of the utmost importance for safety assurance and cost reduction within the aeronautical and aerospace sectors. The Portuguese Air Force (PRTAF) has operated different aircrafts throughout its long existence, and in some cases, has operated a particular type of aircraft for more than 30 years, gathering a great amount of expertise in: assessing failure modes of the aircrafts materials; conducting aircrafts accidents and incidents investigations (sometimes with the participation of the aircraft manufacturers and/or other operators); and in the development of design and repair solutions for in-service related problems. This paper addresses several studies to support the thesis that failure analysis plays a key role in flight safety improvement within the PRTAF. It presents a short summary of developed
Resumo:
Aim: To investigate the effect of implant-abutment angulation and crown material on stress distribution of central incisors. Finite element method was used to simulate the clinical situation of a maxillary right central incisor restored by two different implant-abutment angulations, 15° and 25°, using two different crown materials (IPS E-Max CAD and zirconia). Methods: Two 3D finite element models were specially prepared for this research simulating the abutment angulations. Commercial engineering CAD/CAM package was used to model crown, implant abutment complex and bone (cortical and spongy) in 3D. Linear static analysis was performed by applying a 178 N oblique load. The obtained results were compared with former experimental results. Results: Implant Von Mises stress level was negligibly changed with increasing abutment angulation. The abutment with higher angulation is mechanically weaker and expected to fail at lower loading in comparison with the steeper one. Similarly, screw used with abutment angulation of 25° will fail at lower (about one-third) load value the failure load of similar screw used with abutment angulated by 15°. Conclusions: Bone (cortical and spongy) is insensitive to crown material. Increasing abutment angulation from 15° to 25°, increases stress on cortical bone by about 20% and reduces it by about 12% on spongy bone. Crown fracture resistance is dramatically reduced by increasing abutment angulation. Zirconia crown showed better performance than E-Max one.
Resumo:
Cracks or checks in biscuits weaken the material and cause the product to break at low load levels that are perceived as injurious to product quality. In this work, the structural response of circular digestive biscuits, with diameter 72 mm and thickness 7.2 mm, simply supported around the circumference and loaded by a central concentrated force was investigated by experiment and theory. Tests were conducted to quantify the distribution in breakage strength for structurally sound biscuits, biscuits with natural checks and biscuits with a single known part-through crack. For sound biscuits the breakage force is Normally distributed with a mean of 12.5 N and standard deviation of 1.2 N. For biscuits with checks, the corresponding statistics are 9.6 N ± 2.62 N respectively. The presence of a crack weakens the biscuit and strength, as measured by breakage force falls almost linearly with crack length and crack depth. The orientation of the crack, whether radial or tangential, and its location (i.e. position of the crack mid-point on the biscuit surface) are also important. Deep, radial, cracks located close to the biscuit centre can reduce the strength by up to 50%. Two separate failure criteria were examined for sound and cracked biscuits respectively. The results from these tests were in good accord with theory. For a biscuit without defects, breakage occurred when maximum biscuit stress reached or exceeded the failure stress of 420 kPa. For a biscuit with cracks, breakage occurred as above or alternatively when its critical stress intensity factor of 18 kPam0.5 was reached.