372 resultados para manifolds


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi–Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a ‘configuration matrix’, a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integers in the configuration matrices which were previously taken to have positive semi-definite entries. This broadening of the complete intersection construction leads to a larger class of Calabi–Yau manifolds than that considered in previous work, which nevertheless enjoys much of the same degree of calculational control. These new Calabi–Yau manifolds are complete intersections in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To recognize faces in video, face appearances have been widely modeled as piece-wise local linear models which linearly approximate the smooth yet non-linear low dimensional face appearance manifolds. The choice of representations of the local models is crucial. Most of the existing methods learn each local model individually meaning that they only anticipate variations within each class. In this work, we propose to represent local models as Gaussian distributions which are learned simultaneously using the heteroscedastic probabilistic linear discriminant analysis (PLDA). Each gallery video is therefore represented as a collection of such distributions. With the PLDA, not only the within-class variations are estimated during the training, the separability between classes is also maximized leading to an improved discrimination. The heteroscedastic PLDA itself is adapted from the standard PLDA to approximate face appearance manifolds more accurately. Instead of assuming a single global within-class covariance, the heteroscedastic PLDA learns different within-class covariances specific to each local model. In the recognition phase, a probe video is matched against gallery samples through the fusion of point-to-model distances. Experiments on the Honda and MoBo datasets have shown the merit of the proposed method which achieves better performance than the state-of-the-art technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions (such as variations in illumination and pose). To address this problem, we propose to constrain the clustering of each query image set by forcing the clusters to have resemblance to the clusters in the gallery image sets. We first define a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. We then extract local linear subspaces from a gallery image set via sparse representation. For each local linear subspace, we adaptively construct the corresponding closest subspace from the samples of a probe image set by joint sparse representation. We show that by minimising the sparse representation reconstruction error, we approach the nearest point on a Grassmann manifold. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent techniques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discriminant Analysis (MDA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents an empirical study of the effects of topology on cellular automata rule spaces. The classical definition of a cellular automaton is restricted to that of a regular lattice, often with periodic boundary conditions. This definition is extended to allow for arbitrary topologies. The dynamics of cellular automata within the triangular tessellation were analysed when transformed to 2-manifolds of topological genus 0, genus 1 and genus 2. Cellular automata dynamics were analysed from a statistical mechanics perspective. The sample sizes required to obtain accurate entropy calculations were determined by an entropy error analysis which observed the error in the computed entropy against increasing sample sizes. Each cellular automata rule space was sampled repeatedly and the selected cellular automata were simulated over many thousands of trials for each topology. This resulted in an entropy distribution for each rule space. The computed entropy distributions are indicative of the cellular automata dynamical class distribution. Through the comparison of these dynamical class distributions using the E-statistic, it was identified that such topological changes cause these distributions to alter. This is a significant result which implies that both global structure and local dynamics play a important role in defining long term behaviour of cellular automata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. This paper describes a near-optimal two-step algorithm that constructs the Reeb graph of a Morse function defined over manifolds in any dimension. The algorithm first identifies the critical points of the input manifold, and then connects these critical points in the second step to obtain the Reeb graph. A simplification mechanism based on topological persistence aids in the removal of noise and unimportant features. A radial layout scheme results in a feature-directed drawing of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb graph construction in practice and its applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. We describe an algorithm that constructs the Reeb graph of a Morse function defined on a 3-manifold. Our algorithm maintains connected components of the two dimensional levels sets as a dynamic graph and constructs the Reeb graph in O(nlogn+nlogg(loglogg)3) time, where n is the number of triangles in the tetrahedral mesh representing the 3-manifold and g is the maximum genus over all level sets of the function. We extend this algorithm to construct Reeb graphs of d-manifolds in O(nlogn(loglogn)3) time, where n is the number of triangles in the simplicial complex that represents the d-manifold. Our result is a significant improvement over the previously known O(n2) algorithm. Finally, we present experimental results of our implementation and demonstrate that our algorithm for 3-manifolds performs efficiently in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature in the framework of gauge/gravity duality. The only non-trivial viscous transport coefficient in 1+1 dimensions is the bulk viscosity. We evaluate the bulk viscosity by isolating the quasi-normal mode corresponding to the sound channel for the gravitational background of the D1-brane. We find that the ratio of the bulk viscosity to the entropy density to be 1/4 pi. This ratio continues to be 1/4 pi also in the regime when the D1-brane Yang-Mills theory is dual to the gravitational background of the fundamental string. Our analysis shows that this ratio is equal to 1/4 pi for a class of gravitational backgrounds dual to field theories in 1+1 dimensions obtained by considering D1-branes at cones over Sasaki-Einstein 7-manifolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a Hamiltonian describing a pendulum coupled with several anisochronous oscillators, giving a simple construction of unstable KAM tori and their stable and unstable manifolds for analytic perturbations. When the coupling takes place through an even trigonometric polynomial in the angle variables, we extend analytically the solutions of the equations of motion, order by order in the perturbation parameter, to a large neighbourhood of the real line representing time. Subsequently, we devise an asymptotic expansion for the splitting (matrix) associated with a homoclinic point. This expansion consists of contributions that are manifestly exponentially small in the limit of vanishing gravity, by a shift-of-countour argument. Hence, we infer a similar upper bound for the splitting itself. In particular, the derivation of the result does not call for a tree expansion with explicit cancellation mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.