944 resultados para log-linear models
Resumo:
Trends in age-specific and age-standardized death certification rates from all ischaemic heart disease and cerebrovascular disease in Switzerland have been analysed for the period 1969-87, i.e. since the introduction of the Eighth Revision of the International Classification of Diseases for coding causes of death. For coronary heart disease, overall age-standardized rates of males in the mid-late 1980's were similar to those in the late 1960's, although some upward trend was evident up to the mid 1970's (with a peak rate of 120.4/100,000, World standard, in 1978) followed by steady declines in more recent years (103.8/100,000 in 1987). These falls were larger in truncated (35 to 64 years) rates. For females, overall age-standardized rates were stable around a value of 40/100,000, while truncated rates tended to decrease, particularly over most recent years, with an overall decline of over 25%. Examination of age-specific trends showed that in both sexes declines at younger ages were already evident in the earlier calendar period, while above age 50 some fall became evident only in most recent years. Thus, in a formal log-linear age/period/cohort model, both a period and a cohort component emerged. In relation to cerebrovascular diseases, the overall declines were around 40% in males (from 67.4 to 41.2/100,000, World standard) and 45% for females (from 56.6 to 31.7/100,000), and were proportionally comparable across subsequent age groups above age 45. The estimates for the age/period/cohort model were thus downwards both for the period and the cohort component although, in such a situation, it is difficult to disentangle the major underlying component.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Swiss death certification data over the period 1951-1984 for total cancer mortality and 30 major cancer sites in the population aged 25 to 74 years were analysed using a log-linear Poisson model with arbitrary constraints on the parameters to isolate the effects of birth cohort, calendar period of death and age. The overall pattern of total cancer mortality in males was stable for period values and showed some moderate decreases in cohort values restricted to the generations born after 1930. Cancer mortality trends were more favourable in females, with steady, though moderate, declines in both cohort and period values. According to the estimates from the model, the worst affected generation for male lung cancer was that born around 1910, and a flattening of trends or some moderate decline was observed for more recent cohorts, although this decline was considerably more limited than in other European countries. There were decreases in cohort and period values for stomach, intestine and oesophageal cancer in both sexes and (cervix) uteri in females. Increases were observed in both cohort and period trends for pancreas and liver in males and for several other neoplasms, including prostate, brain, leukaemias and lymphomas, restricted, however, for the latter sites, to the earlier cohorts and hence partly attributable to improved diagnosis and certification in the elderly. Although age values for lung cancer in females were around 10-times lower than in males, upward trends in female lung cancer cohort values were observed in subsequent cohorts and for period values from the late 1960's onwards. Therefore, future trends in female lung cancer mortality should continue to be monitored. The application of these age/period/cohort models thus provides a summary guide for the reading and interpretation of cancer mortality trends, although it cannot replace careful inspection of single age-specific rates.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Aim To assess the geographical transferability of niche-based species distribution models fitted with two modelling techniques. Location Two distinct geographical study areas in Switzerland and Austria, in the subalpine and alpine belts. Methods Generalized linear and generalized additive models (GLM and GAM) with a binomial probability distribution and a logit link were fitted for 54 plant species, based on topoclimatic predictor variables. These models were then evaluated quantitatively and used for spatially explicit predictions within (internal evaluation and prediction) and between (external evaluation and prediction) the two regions. Comparisons of evaluations and spatial predictions between regions and models were conducted in order to test if species and methods meet the criteria of full transferability. By full transferability, we mean that: (1) the internal evaluation of models fitted in region A and B must be similar; (2) a model fitted in region A must at least retain a comparable external evaluation when projected into region B, and vice-versa; and (3) internal and external spatial predictions have to match within both regions. Results The measures of model fit are, on average, 24% higher for GAMs than for GLMs in both regions. However, the differences between internal and external evaluations (AUC coefficient) are also higher for GAMs than for GLMs (a difference of 30% for models fitted in Switzerland and 54% for models fitted in Austria). Transferability, as measured with the AUC evaluation, fails for 68% of the species in Switzerland and 55% in Austria for GLMs (respectively for 67% and 53% of the species for GAMs). For both GAMs and GLMs, the agreement between internal and external predictions is rather weak on average (Kulczynski's coefficient in the range 0.3-0.4), but varies widely among individual species. The dominant pattern is an asymmetrical transferability between the two study regions (a mean decrease of 20% for the AUC coefficient when the models are transferred from Switzerland and 13% when they are transferred from Austria). Main conclusions The large inter-specific variability observed among the 54 study species underlines the need to consider more than a few species to test properly the transferability of species distribution models. The pronounced asymmetry in transferability between the two study regions may be due to peculiarities of these regions, such as differences in the ranges of environmental predictors or the varied impact of land-use history, or to species-specific reasons like differential phenotypic plasticity, existence of ecotypes or varied dependence on biotic interactions that are not properly incorporated into niche-based models. The lower variation between internal and external evaluation of GLMs compared to GAMs further suggests that overfitting may reduce transferability. Overall, a limited geographical transferability calls for caution when projecting niche-based models for assessing the fate of species in future environments.
Resumo:
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations.
Resumo:
The objective of this work was to assess the genetic diversity and population structure of wheat genotypes, to detect significant and stable genetic associations, as well as to evaluate the efficiency of statistical models to identify chromosome regions responsible for the expression of spike-related traits. Eight important spike characteristics were measured during five growing seasons in Serbia. A set of 30 microsatellite markers positioned near important agronomic loci was used to evaluate genetic diversity, resulting in a total of 349 alleles. The marker-trait associations were analyzed using the general linear and mixed linear models. The results obtained for number of allelic variants per locus (11.5), average polymorphic information content value (0.68), and average gene diversity (0.722) showed that the exceptional level of polymorphism in the genotypes is the main requirement for association studies. The population structure estimated by model-based clustering distributed the genotypes into six subpopulations according to log probability of data. Significant and stable associations were detected on chromosomes 1B, 2A, 2B, 2D, and 6D, which explained from 4.7 to 40.7% of total phenotypic variations. The general linear model identified a significantly larger number of marker-trait associations (192) than the mixed linear model (76). The mixed linear model identified nine markers associated to six traits.
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.
Resumo:
AIM: This study examined whether problematic Internet use was associated with substance use among young adolescents and assessed whether this association accounted for the use of tobacco, alcohol, cannabis and other drugs. METHODS: Using the Internet Addiction Test, we divided a representative sample of 3067 adolescents in Switzerland (mean age 14 years) into regular and problematic Internet users. We performed a bivariate analysis and two logistic regression models, to analyse substances separately and simultaneously, and developed a log-linear model to define the associations between significant variables. RESULTS: Problematic Internet users were more likely to be female, to use substances, to come from nonintact families, to report poor emotional well-being and to be below average students. The first model showed significant associations between problematic users and each substance, with adjusted odds ratios of 2.05 for tobacco, 1.72 for alcohol, 1.94 for cannabis and 2.73 for other drugs. Only smoking remained significant in the second model, with an adjusted odds ratio of 1.71. CONCLUSION: Problematic Internet use is associated with other risky behaviours and may be an important early predictor of adolescent substance use. Therefore, it should be included in the psychosocial screening of adolescents.
Resumo:
1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.
Resumo:
La question des coûts des soins de santé gagne en intérêt dans le contexte du vieillissement de la population. On sait que les personnes en moins bonne santé, bien que vivant moins longtemps, sont associées à des coûts plus élevés. On s'intéresse aux facteurs associés à des coûts publics des soins de santé plus élevés au niveau individuel, chez les Québécois vivant en ménage privé âgés de 65 ans et plus, présentant au moins un type d’incapacité. À l’aide de modèles de régression, la variation des coûts pour la consultation de professionnels de la santé et la prise de médicaments a été analysée en fonction du nombre d’incapacités ainsi que de la nature de celles-ci. Les informations sur l’état de santé et la situation socio-démographique proviennent de l’Enquête sur les limitations d’activités (EQLA) de 1998, celles sur les coûts du Fichier d’inscription des personnes assurées (FIPA) de la Régie de l’Assurance maladie du Québec (RAMQ), pour la même année. Les résultats montrent que les deux types de coûts considérés augmentent en fonction du nombre d’incapacités. D’autre part, des coûts plus élevés ont été trouvés chez les personnes présentant une incapacité liée à l’agilité concernant la consultation de professionnels de la santé, alors que, concernant la prise de médicaments, le même constat s’applique aux personnes avec une incapacité liée à la mobilité. Les deux types de coûts considérés présentent un niveau plus élevé chez les personnes présentant une incapacité liée au psychisme, en particulier lorsque l’on considère la prise de médicaments. Ces observations soulignent l’intérêt de considérer la nature du problème de santé lorsque l’on étudie les déterminants individuels du niveau des coûts des soins de santé.
Resumo:
In this paper, we examine the relationships between log odds rate and various reliability measures such as hazard rate and reversed hazard rate in the context of repairable systems. We also prove characterization theorems for some families of distributions viz. Burr, Pearson and log exponential models. We discuss the properties and applications of log odds rate in weighted models. Further we extend the concept to the bivariate set up and study its properties.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression
Resumo:
This presentation describes the evolution of SDLCs from the first formally proposed linear models including, the Waterfall (Royce 1970) through to iterative prototyping models (Spiral and Win-Win Spiral) and incremental, iterative models used in Agile Methods. We discuss the problems iinherent in ech prpoosal and how successive models attempt to solve them.