962 resultados para interactive laboratory
Resumo:
Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.
Resumo:
This research study examines qualitatively and quantitatively the influence of introducing an activity in the traditional engineering classroom. It studies instances of active learning and its relationship with the student learning outcomes. The primary purpose of this study was to compare the learning outcomes of students who were involved in an active TLA with those students who were not, instead they learned under traditional teaching and studying approaches. I present the argument that the introduction of a TLA in class stimulates student engagement bringing enormous benefits to student learning. The outcomes of this study were measured using qualitative and quantitative data to evaluate the levels of student engagement, achievement and satisfaction in the terms of Intended Learning Outcomes (ILOs). Results indicate that students held positive attitude towards the activities in class and also, that a positive link between TLA, learning approach and learning outcome exist. It also provides insights about the potential benefits of active learning when compared with traditional, passive and teacher-centred methods of teaching & learning.
Resumo:
Objectives: To identify and appraise the literature concerning nurse-administered procedural sedation and analgesia in the cardiac catheter laboratory. Design and data sources: An integrative review method was chosen for this study. MEDLINE and CINAHL databases as well as The Cochrane Database of Systematic Reviews and the Joanna Briggs Institute were searched. Nineteen research articles and three clinical guidelines were identified. Results: The authors of each study reported nurse-administered sedation in the CCL is safe due to the low incidence of complications. However, a higher percentage of deeply sedated patients were reported to experience complications than moderately sedated patients. To confound this issue, one clinical guideline permits deep sedation without an anaesthetist present, while others recommend against it. All clinical guidelines recommend nurses are educated about sedation concepts. Other findings focus on pain and discomfort and the cost-savings of nurse-administered sedation, which are associated with forgoing anaesthetic services. Conclusions: Practice is varied due to limitations in the evidence and inconsistent clinical practice guidelines. Therefore, recommendations for research and practice have been made. Research topics include determining how and in which circumstances capnography can be used in the CCL, discerning the economic impact of sedation-related complications and developing a set of objectives for nursing education about sedation. For practice, if deep sedation is administered without an anaesthetist present, it is essential nurses are adequately trained and have access to vital equipment such as capnography to monitor ventilation because deeply sedated patients are more likely to experience complications related to sedation. These initiatives will go some way to ensuring patients receiving nurse-administered procedural sedation and analgesia for a procedure in the cardiac catheter laboratory are cared for using consistent, safe and evidence-based practices.
Resumo:
Aims and objectives To explore issues and challenges associated with nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory from the perspectives of senior nurses. Background Nurses play an important part in managing sedation because the prescription is usually given verbally directly from the cardiologist who is performing the procedure and typically, an anaesthetist is not present. Design A qualitative exploratory design was employed. Methods Semi-structured interviews with 23 nurses from 16 cardiac catheterisation laboratories across four states in Australia and also New Zealand were conducted. Data analysis followed the guide developed by Braun and Clark to identify the main themes. Results Major themes emerged from analysis regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. Conclusions The most critical issue identified in this study is that current guidelines, which are meant to apply regardless of the clinical setting, are not practical for the cardiac catheterisation laboratory due to a lack of access to anaesthetists. Furthermore, this study has demonstrated that nurses hold concerns about the legitimacy of their practice in situations when they are required to perform tasks outside of clinical practice guidelines. To address nurses' concerns, it is proposed that new guidelines could be developed, which address the unique circumstances in which sedation is used in the cardiac catheterisation laboratory. Relevance to clinical practice Nurses need to possess advanced knowledge and skills in monitoring for the adverse effects of sedation. Several challenges impact on nurses' ability to monitor patients during procedural sedation and analgesia. Preprocedural patient education about what to expect from sedation is essential.
Resumo:
Background: Side effects of the medications used for procedural sedation and analgesia in the cardiac catheterisation laboratory are known to cause impaired respiratory function. Impaired respiratory function poses considerable risk to patient safety as it can lead to inadequate oxygenation. Having knowledge about the conditions that predict impaired respiratory function prior to the procedure would enable nurses to identify at-risk patients and selectively implement intensive respiratory monitoring. This would reduce the possibility of inadequate oxygenation occurring. Aim: To identify pre-procedure risk factors for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Design: Retrospective matched case–control. Methods: 21 cases of impaired respiratory function were identified and matched to 113 controls from a consecutive cohort of patients over 18 years of age. Conditional logistic regression was used to identify risk factors for impaired respiratory function. Results: With each additional indicator of acute illness, case patients were nearly two times more likely than their controls to experience impaired respiratory function (OR 1.78; 95% CI 1.19–2.67; p = 0.005). Indicators of acute illness included emergency admission, being transferred from a critical care unit for the procedure or requiring respiratory or haemodynamic support in the lead up to the procedure. Conclusion: Several factors that predict the likelihood of impaired respiratory function were identified. The results from this study could be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory.
Resumo:
Introduction: Nursing in the cardiac catheterisation laboratory (CCL) varies globally in terms of scope and deployment. In the US, all allied staff are cross-trained into all CCL roles. The Australian and New Zealand experience has legislative frameworks that reserves specific functions to nurses. Yet, the nursing role within the CCL is poorly researched and defined. Aim: This study sought to gain deeper understanding of the perceived role of CCL nurses in Australia and New Zealand. Method: A descriptive qualitative study using semi-structured in-depth interviews was used. A cross-sectional sample of 23 senior clinical nurses or nursing managers representing 16 CCLs across Australia and New Zealand was obtained. Data were digitally recorded and transcribed verbatim prior to analysis by three researchers. Results: Five major themes emerged from the data. These themes were: 1. The CCL is a unique environment; 2. CCL nursing is a unique and advanced cardiac nursing discipline; 3. The recruitment attributes for CCL nurses are advanced; 4. Education needs to be standardised; and 5. The evidence to support practice is poor. Discussion: The CCL environment is a dynamic, deeply interdisciplinary setting with CCL nursing seen to be a unique advanced practice role. Yet the time has come for a scope of practice, educational standards, guidelines and competencies was expressed by the participants. Conclusion: Nursing in the CCL is an advanced practice role working within a complex interdisciplinary environment. Further work is required to define the role of CCL nurses together with the evidence-base for their practice.
Resumo:
Background: Australian and New Zealand College of Anaesthetists’ guidelines for procedural sedation and analgesia (PSA) are intended to apply across all clinical settings. As nurses are frequently responsible for patient care during PSA in the cardiac catheterisation laboratory (CCL), their perspectives can provide insight into the effectiveness of these guidelines within this particular setting. Methods: A cross-sectional sampling design was used to recruit nurses from urban, regional, public and private CCLs across Australia and New Zealand. Semi-structured interviews were conducted, digitally recorded and transcribed. Data were analysed using thematic analysis. Findings: Twenty-three nurses from 16 CCLs across four states in Australia and New Zealand participated. Most held senior positions (managers=14; educators=5) and CCL experience ranged from 4 to 26 years (mean 11). Participants were concerned about the legitimacy of their practice as they administered PSA outside of guideline recommendations and deemed present education and training as deficient. Participants noted also that guideline recommendations were sometimes not adhered to as it was difficult to balance the increasingly complex PSA requirements of their case-mix with limited access to anaesthetists while trying not to delay procedures. Conclusion: Findings suggest that application of current PSA guidelines may be impractical for CCL nurses and, as a consequence, they are often not followed. Participants were concerned about risks to patient safety as they felt education and training was not commensurable with practice requirements. The findings suggest existing guidelines should be reviewed or new guidelines developed which address nursing practice, education and competency standards for PSA in the CCL
Resumo:
Background: Procedural sedation and analgesia (PSA) administered by nurses in the cardiac catheterisation laboratory (CCL) is unlikely to yield serious complications. However, the safety of this practice is dependent on timely identification and treatment of depressed respiratory function. Aim: Describe respiratory monitoring in the CCL. Methods: Retrospective medical record audit of adult patients who underwent a procedure in the CCLs of one private hospital in Brisbane during May and June 2010. An electronic database was used to identify subjects and an audit tool ensured data collection was standardised. Results: Nurses administered PSA during 172/473 (37%) procedures including coronary angiographies, percutaneous coronary interventions, electrophysiology studies, radiofrequency ablations, cardiac pacemakers, implantable cardioverter defibrillators, temporary pacing leads and peripheral vascular interventions. Oxygen saturations were recorded during 160/172 (23%) procedures, respiration rate was recorded during 17/172 (10%) procedures, use of oxygen supplementation was recorded during 40/172 (23%) procedures and 13/172 (7.5%; 95% CI=3.59–11.41%) patients experienced oxygen desaturation. Conclusion: Although oxygen saturation was routinely documented, nurses did not regularly record respiration observations. It is likely that surgical draping and the requirement to minimise radiation exposure interfered with nurses’ ability to observe respiration. Capnography could overcome these barriers to respiration assessment as its accurate measurement of exhaled carbon dioxide coupled with the easily interpretable waveform output it produces, which displays a breath-by-breath account of ventilation, enables identification of respiratory depression in real-time. Results of this audit emphasise the need to ascertain the clinical benefits associated with using capnography to assess ventilation during PSA in the CCL.
Resumo:
The cardiac catheterisation laboratory (CCL) is a specialised medical radiology facility where both chronic-stable and life-threatening cardiovascular illness is evaluated and treated. Although there are many potential sources of discomfort and distress associated with procedures performed in the CCL, a general anaesthetic is not usually required. For this reason, an anaesthetist is not routinely assigned to the CCL. Instead, to manage pain, discomfort and anxiety during the procedure, nurses administer a combination of sedative and analgesic medications according to direction from the cardiologist performing the procedure. This practice is referred to as nurse-administered procedural sedation and analgesia (PSA). While anecdotal evidence suggested that nurse-administered PSA was commonly used in the CCL, it was clear from the limited information available that current nurse-led PSA administration and monitoring practices varied and that there was contention around some aspects of practice including the type of medications that were suitable to be used and the depth of sedation that could be safely induced without an anaesthetist present. The overall aim of the program of research presented in this thesis was to establish an evidence base for nurse-led sedation practices in the CCL context. A sequential mixed methods design was used over three phases. The objective of the first phase was to appraise the existing evidence for nurse-administered PSA in the CCL. Two studies were conducted. The first study was an integrative review of empirical research studies and clinical practice guidelines focused on nurse-administered PSA in the CCL as well as in other similar procedural settings. This was the first review to systematically appraise the available evidence supporting the use of nurse-administered PSA in the CCL. A major finding was that, overall, nurse-administered PSA in the CCL was generally deemed to be safe. However, it was concluded from the analysis of the studies and the guidelines that were included in the review, that the management of sedation in the CCL was impacted by a variety of contextual factors including local hospital policy, workforce constraints and cardiologists’ preferences for the type of sedation used. The second study in the first phase was conducted to identify a sedation scale that could be used to monitor level of sedation during nurse-administered PSA in the CCL. It involved a structured literature review and psychometric analysis of scale properties. However, only one scale was found that was developed specifically for the CCL, which had not undergone psychometric testing. Several weaknesses were identified in its item structure. Other sedation scales that were identified were developed for the ICU. Although these scales have demonstrated validity and reliability in the ICU, weaknesses in their item structure precluded their use in the CCL. As findings indicated that no existing sedation scale should be applied to practice in the CCL, recommendations for the development and psychometric testing of a new sedation scale were developed. The objective of the second phase of the program of research was to explore current practice. Three studies were conducted in this phase using both quantitative and qualitative research methods. The first was a qualitative explorative study of nurses’ perceptions of the issues and challenges associated with nurse-administered PSA in the CCL. Major themes emerged from analysis of the qualitative data regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. The second study in Phase Two was a cross-sectional survey of nurse-administered PSA practice in Australian and New Zealand CCLs. This was the first study to quantify the frequency that nurse-administered PSA was used in the CCL setting and to characterise associated nursing practices. It was found that nearly all CCLs utilise nurse-administered PSA (94%). Of note, by characterising nurse-administered PSA in Australian and New Zealand CCLs, several strategies to improve practice, such as setting up protocols for patient monitoring and establishing comprehensive PSA education for CCL nurses, were identified. The third study in Phase Two was a matched case-control study of risk factors for impaired respiratory function during nurse-administered PSA in the CCL setting. Patients with acute illness were found to be nearly twice as likely to experience impaired respiratory function during nurse-administered PSA (OR=1.78; 95%CI=1.19-2.67; p=0.005). These significant findings can now be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered PSA in the CCL. The objective of the third and final phase of the program of research was to develop recommendations for practice. To achieve this objective, a synthesis of findings from the previous phases of the program of research informed a modified Delphi study, which was conducted to develop a set of clinical practice guidelines for nurse-administered PSA in the CCL. The clinical practice guidelines that were developed set current best practice standards for pre-procedural patient assessment and risk screening practices as well as the intra and post-procedural patient monitoring practices that nurses who administer PSA in the CCL should undertake in order to deliver safe, evidence-based and consistent care to the many patients who undergo procedures in this setting. In summary, the mixed methods approach that was used clearly enabled the research objectives to be comprehensively addressed in an informed sequential manner, and, as a consequence, this thesis has generated a substantial amount of new knowledge to inform and support nurse-led sedation practice in the CCL context. However, a limitation of the research to note is that the comprehensive appraisal of the evidence conducted, combined with the guideline development process, highlighted that there were numerous deficiencies in the evidence base. As such, rather than being based on high-level evidence, many of the recommendations for practice were produced by consensus. For this reason, further research is required in order to ascertain which specific practices result in the most optimal patient and health service outcomes. Therefore, along with necessary guideline implementation and evaluation projects, post-doctoral research is planned to follow up on the research gaps identified, which are planned to form part of a continuing program of research in this field.
Resumo:
Impaired respiratory function (IRF) during procedural sedation and analgesia (PSA) poses considerable risk to patient safety as it can lead to inadequate oxygenation and ventilation. Risk factors that can be screened prior to the procedure have not been identified for the cardiac catheterization laboratory (CCL).
Resumo:
“The Cube” is a unique facility that combines 48 large multi-touch screens and very large-scale projection surfaces to form one of the world’s largest interactive learning and engagement spaces. The Cube facility is part of the Queensland University of Technology’s (QUT) newly established Science and Engineering Centre, designed to showcase QUT’s teaching and research capabilities in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. In this application paper we describe, the Cube, its technical capabilities, design rationale and practical day-to-day operations, supporting up to 70,000 visitors per week. Essential to the Cube’s operation are five interactive applications designed and developed in tandem with the Cube’s technical infrastructure. Each of the Cube’s launch applications was designed and delivered by an independent team, while the overall vision of the Cube was shepherded by a small executive team. The diversity of design, implementation and integration approaches pursued by these five teams provides some insight into the challenges, and opportunities, presented when working with large distributed interaction technologies. We describe each of these applications in order to discuss the different challenges and user needs they address, which types of interactions they support and how they utilise the capabilities of the Cube facility.
Resumo:
The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.
Resumo:
Two longitudinal experiments were conducted exploring emotional experiences with PIDs over six months including media and medial Portable Interactive Devices (PIDs). Results identifying the impact of negative social and personal interactions on the overall emotional experience as well as different task categories (Features, Functional, Mediation and Auxiliary) and their corresponding emotional responses have previously been reported [2,3,4,5]. This paper builds on these findings and presents the Designing for Evolving Emotional Experience (DE3) framework promoting positive (and deals with negative) emotional experiences with PIDs including a set of principles to better understand emotional experiences. To validate the DE3 framework a preliminary trial was conducted with five practicing industrial designers. The trial required them to consider initial design concepts using the DE3 framework followed by a questionnaire asking about their use of the framework for concept development. The trial aimed to analyse the effectiveness, efficiency and usefulness of the framework in assisting in the development of initial concepts for PIDs taking into account emotional experiences. Common themes regarding the framework are outlined including the ease of use, the effectiveness in focusing on the personal and social contexts and positive ratings regarding its use. Overall the feedback from the preliminary trial was encouraging with responses suggesting that the framework was accessible, rated highly and most importantly permitted designers to consider emotional experiences during concept development. The paper concludes with a discussion regarding the future development of the DE3 framework and the potential implications to design theory and the design discipline.
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders’ performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future ‘drink riding’ policy considerations are discussed.