982 resultados para implant-abutment microgap
Resumo:
The aim of this study was to compare the stress distribution induced by posterior functional loads on conventional complete dentures and implant-retained overdentures with different attachment systems using a two-dimentional Finite Element Analysis (FEA-2D). Three models representative of edentulous mandible were constructed on AutoCAD software; Group A (control), a model of edentulous mandible supporting a complete denture; Group B, a model of edentulous mandible supporting an overdenture over two splinted implants connected with the bar-clip system; Group C, a model of edentuluos mandible supporting an overdenture over two unsplinted impants with the O-ring system. Evaluation was conducted on Ansys software, with a vertical force of 100 N applied on the mandibular left first molar. When the stress was evaluated in supporting tissues, groups B (51.0 MPa) and C (52.6 MPa) demonstrated higher stress values than group A (10.1 MPa). Within the limits of this study, it may be conclued that the use of an attachment system increased stress values; furthermore, the use of splinted implants associated with the bar-clip attachment system favoured a lower stress distribution over the supporting tissue than the unsplinted implants with an O-ring abutment to retain the manibular overdenture.
Resumo:
Statement of problem. Implant overdenture prostheses are prone to acrylic resin fracture because of space limitations around the implant overdenture components.Purpose. The purpose of this study was to evaluate the influence of E-glass fibers and acrylic resin thickness in resisting acrylic resin fracture around a simulated overdenture abutment.Material and methods. A model was developed to simulate the clinical situation of an implant overdenture abutment with varying acrylic resin thickness (1.5 or 3.0 mm) with or without E-glass fiber reinforcement. Forty-eight specimens with an underlying simulated abutment were divided into 4 groups (n=12): 1.5 mm acrylic resin without E-glass fibers identified as thin with no E-glass fiber mesh (TN-N); 1.5 mm acrylic resin with E-glass fibers identified as thin with E-glass fiber mesh (TN-F); 3.0 mm acrylic resin without E-glass fibers identified as thick without E-glass fiber mesh (TK-N); and 3.0 mm acrylic resin with E-glass fibers identified as thick with E-glass fiber mesh (TK-F). All specimens were submitted to a 3-point bending test and fracture loads (N) were analyzed with a 2-way ANOVA and Tukey's post hoc test (alpha=.05).Results. The results revealed significant differences in fracture load among the 4 groups, with significant effects from both thickness (P<.001) and inclusion of the mesh (P<.001). Results demonstrated no interaction between mesh and thickness (P=.690). The TN-N: 39 +/- 5 N; TN-F: 50 +/- 6.9 N; TK-N: 162 +/- 13 N; and TK-F: 193 +/- 21 N groups were all statistically different (P<.001).Conclusions. The fracture load of a processed, acrylic resin implant-supported overdenture can be significantly increased by the addition of E-glass fibers even when using thin acrylic resin sections. on a relative basis, the increase in fracture load was similar when adding E-glass fibers or increasing acrylic resin thickness. (J Prosthet Dent 2011;106:373-377)
Resumo:
Purpose: Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Materials and Methods: Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 pm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 pm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 pm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. Results: The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. Conclusions: The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:788-796
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.
Resumo:
Purpose: This study evaluated the influence of distal extension removable partial denture associated with implant in cases of different bone level of abutment tooth, using 2D finite element analysis.Materials and Methods: Eight hemiarch models were simulated: model A-presenting tooth 33 and distal extension removable partial denture replacing others teeth, using distal rest connection and no bone lost; model B-similar to model A but presenting distal guide plate connection; model C-similar to model A but presenting osseointegrated implant with ERA retention system associated under prosthetic base; model D-similar to model B but presenting osseointegrated implant as described in model C; models E, F, G, and H were similar to models A, B, C, and D but presenting reduced periodontal support around tooth 33. Using ANSYS 9.0 software, the models were loaded vertically with 50 N on each cusp tip. For results, von Mises Stress Maps were plotted.Results: Maximum stress value was encountered in model G (201.023 MPa). Stress distribution was concentrated on implant and retention system. The implant/removable partial denture association decreases stress levels on alveolar mucosa for all models.Conclusions: Use of implant and ERA system decreased stress concentrations on supporting structures in all models. Use of distal guide plate decreased stress levels on abutment tooth and cortical and trabecular bone. Tooth apex of models with reduced periodontal support presented increased stress when using distal rest. (Implant Dent 2011;20:192-201)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the biomechanical behavior of a mandibular distal extension removable partial denture (DERPD) associated with an implant and different retention system, by bidimensional finite element method. Five hemimandible models with a canine and external hexagon implant at second molar region associated with DERPD were simulated: model A, hemimandible with a canine and a DERPD; model B, hemimandible with a canine and implant with a healing abutment associated to a DERPD; model C, hemimandible with a canine and implant with an ERA attachment associated to a DERPD; model D, hemimandible with a canine and implant with an O'ring attachment associated to a DERPD; and model E, hemimandible with a canine and implant-supported prosthesis associated to a DERPD. Cusp tips were loaded with 50 N of axial or oblique force (45 degrees). Finite element analysis was performed in ANSYS 9.0. model E showed the higher displacement and overload in the supporting tissues; the patterns of stress distribution around the dental apex of models B, C, and D were similar. The association between a DERPD and an osseointegrated implant using the ERA or O'ring systems shows lower stress values. Oblique forces showed higher stress values and displacement. Oblique forces increased the displacement and stress levels in all models; model C displayed the best stress distribution in the supporting structures; healing abutment, ERA, and O'ring systems were viable with RPD, but DERPD association with a single implant-supported prosthesis was nonviable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of insertion torque on micromotion to a lateral force in three different implant designs. Material and methods: Thirty-six implants with identical thread design, but different cutting groove design were divided in three groups: (1) non-fluted (no cutting groove, solid screw-form); (2) fluted (901 cut at the apex, tap design); and (3) Blossomt (Patent pending) (non-fluted with engineered trimmed thread design). The implants were screwed into polyurethane foam blocks and the insertion torque was recorded after each turn of 901 by a digital torque gauge. Controlled lateral loads of 10N followed by increments of 5 up to 100N were sequentially applied by a digital force gauge on a titanium abutment. Statistical comparison was performed with two-way mixed model ANOVA that evaluated implant design group, linear effects of turns and displacement loads, and their interaction. Results: While insertion torque increased as a function of number of turns for each design, the slope and final values increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- standard deviation [SD] = 64.1 +/- 26.8, 139.4 +/- 17.2, and 205.23 +/- 24.3 Ncm, respectively). While a linear relationship between horizontal displacement and lateral force was observed for each design, the slope and maximal displacement increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- SD 530 +/- 57.7, 585.9 +/- 82.4, and 782.33 +/- 269.4 mm, respectively). There was negligible to moderate levels of association between insertion torque and lateral displacement in the Blossomt, fluted and non-fluted design groups, respectively. Conclusion: Insertion torque was reduced in implant macrodesigns that incorporated cutting edges, and lesser insertion torque was generally associated with decreased micromovement. However, insertion torque and micromotion were unrelated within implant designs, particularly for those designs showing the least insertion torque.
Resumo:
Purpose: This in vitro study evaluated the dimensional accuracy of two impression techniques (tapered and splinted) with two stock trays (plastic and metal) for implant-supported prostheses. Materials and Methods: A master cast with four parallel abutment analogs and a passive framework were fabricated. Polyvinyl siloxane impression material was used for all impressions with two metal stock trays and two plastic stock trays (closed and open trays). Four groups (tapered plastic, splinted plastic, tapered metal, and splinted metal) and a control group (master cast) were tested (n = 5 for each group). After the framework was seated on each of the casts, one abutment screw was tightened, and the marginal gap between the abutment and framework on the other side was measured with a stereomicroscope. The measurements were analyzed with the Kruskal-Wallis one-way analysis of variance on ranks test followed by the Dunn method. Results: The mean values (+/- standard deviations) for the abutment/framework interface gaps were: master cast, 32 +/- 2 mu m; tapered metal, 44 +/- 10 mu m; splinted metal, 69 +/- 28 mu m; tapered plastic, 164 +/- 58 mu m; splinted plastic, 128 +/- 47 mu m. No significant difference was detected between the master cast, tapered metal, and splinted metal groups or between the tapered and splinted plastic groups. Conclusions: In this study, the rigidity of the metal stock tray ensured better results than the plastic stock tray for implant impressions with a high-viscosity impression material (putty). Statistically similar results were obtained using tapered impression copings and splinted squared impression copings. The tapered impression copings technique and splinted squared impression copings technique with a metal stock tray produced precise casts with no statistically significant difference in interface gaps compared to the master cast. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:544-550.
Resumo:
Purpose: The present study was designed to analyze strain distributions caused by varying the fixture-abutment design and fixture alignment.Materials and Methods: Three implants of external, internal hexagon, and Morse taper were embedded in the center of each polyurethane block in straight placement and offset placement. Four strain gauges (SGs) were bonded on the surface of polyurethane block, which was designated SG1 placed mesially adjacent to implant A, SG2 and SG3 were placed mesially and distally adjacent to the implant B and SG4 was placed distally adjacent to the implant C. The 30 superstructures' occlusal screws were tightened onto the Microunit abutments with a torque of 10 N cm using the manufacturers' manual torque-controlling device.Results: There were statistically significant differences in prosthetic connection (P value = 0.0074 < 0.5). There were no statistically significant differences in placement configuration/alignment (P value = 0.7812 > 0.5).Conclusion: The results showed fundamental differences in both conditions. There was no evidence that there was any advantage to offset implant placement in reducing the strain around implants. The results also revealed that the internal hexagon and Morse taper joints did not reduce the microstrain around implants. (Implant Dent 2011; 20:e24-e32)
Resumo:
AimTo evaluate the influence (i) of various implant platform configurations and (ii) of implant surface characteristics on peri-implant tissue dimensions in a dog model.Material and methodsMandibular premolars and first molars were extracted bilaterally in six Labrador dogs. After 3 months of healing, two implants, one with a turned and a second with a moderately rough surface, were installed on each side of the mandible in the premolar region. on the right side of the mandible, implants with a tapered and enlarged platform were used, while standard cylindrical implants were installed in the left side of the mandible. Abutments with the diameter of the cylindrical implants were used resulting in a mismatch of 0.25 mm at the tapered implant sites. The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.ResultsAll implants were completely osseointegrated. A minimal buccal bone resorption was observed for both implant configurations and surface topographies. Considering the animals as the statistical unit, no significant differences were found at the buccal aspect in relation to bone levels and soft tissue dimensions. The surface topographies did not influence the outcomes either.ConclusionsThe present study failed to show differences in peri-implant tissue dimensions when a mismatch of 0.25 mm from a tapered platform to an abutment was applied. The surface topographies influence a neither marginal bone resorption or peri-implant soft tissue dimension.To cite this article:Baffone GM, Botticelli D, Pantani F, Cardoso LC, Schweikert MT, Lang NP. Influence of various implant platform configurations on peri-implant tissue dimensions: an experimental study in dog.Clin. Oral Impl. Res. 22, 2011; 438-444.
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.