419 resultados para hyperbolic decomplexification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

No presente artigo apresentamos processos de Levy usados na literatura para modelar os retornos dos ativos financeiros, estes processos sao gerados pelas distribuições Pareto-Estaveis e Hiperbolicas. Estudamos algumas propriedades destas distribui<;oes, em particular a propriedade da invariancia da escala temporal. Por ultimo apresentamos evidencias empiricas da aplicabilidade destes processos para modelar retornos de ativos Brasileiros, para isto usamos 0 Ibovespa, o recibo da Telebras e Petrobras, na amostra usamos dados dos periodos de 1 de janeiro de 1995 a 31 de dezembro de 1998 (Gl) e de 12 de janeiro de 1996 a 31 de dezembro de 1997(G2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Industrial e de Sistemas (PDEIS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiphase flows, hyperbolic model, Godunov method, nozzle flow, nonstrictly hyperbolic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperbolic systems, non-relativistic and relativistic Euler equations, kinetic schemes, conservation laws, discontinuous solutions, high order accuracy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial conditions, we describe how to locally isometrically embed this in a larger non- positively curved 2-complex with free-by-cyclic fundamental group. This embedding procedure is used to produce examples of CAT(0) free-by-cyclic groups that contain closed hyperbolic surface subgroups with polynomial distortion of arbitrary degree. We also produce examples of CAT(0) hyperbolic free-by-cyclic groups that contain closed hyperbolic surface subgroups that are exponentially distorted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that a particular free-by-cyclic group has CAT(0) dimension equal to 2, but CAT(-1) dimension equal to 3. We also classify the minimal proper 2-dimensional CAT(0) actions of this group; they correspond, up to scaling, to a 1-parameter family of locally CAT(0) piecewise Euclidean metrics on a fixed presentation complex for the group. This information is used to produce an infinite family of 2-dimensional hyperbolic groups, which do not act properly by isometries on any proper CAT(0) metric space of dimension 2. This family includes a free-by-cyclic group with free kernel of rank 6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to give an explicit formula for the SL2(C)-twisted Reidemeister torsion as defined in [6] in the case of twist knots. For hyperbolic twist knots, we also prove that the twisted Reidemeister torsion at the holonomy representation can be expressed as a rational function evaluated at the cusp shape of the knot. Tables given approximations of the twisted Reidemeister torsion for twist knots on some concrete examples are also enclosed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamic and asymmetric dependence structure between equity portfolios from the US and UK. We demonstrate the statistical significance of dynamic asymmetric copula models in modelling and forecasting market risk. First, we construct “high-minus-low" equity portfolios sorted on beta, coskewness, and cokurtosis. We find substantial evidence of dynamic and asymmetric dependence between characteristic-sorted portfolios. Second, we consider a dynamic asymmetric copula model by combining the generalized hyperbolic skewed t copula with the generalized autoregressive score (GAS) model to capture both the multivariate non-normality and the dynamic and asymmetric dependence between equity portfolios. We demonstrate its usefulness by evaluating the forecasting performance of Value-at-Risk and Expected Shortfall for the high-minus-low portfolios. From back-testing, e find consistent and robust evidence that our dynamic asymmetric copula model provides the most accurate forecasts, indicating the importance of incorporating the dynamic and asymmetric dependence structure in risk management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual way to investigate the statistical properties of finitely generated subgroups of free groups, and of finite presentations of groups, is based on the so-called word-based distribution: subgroups are generated (finite presentations are determined) by randomly chosen k-tuples of reduced words, whose maximal length is allowed to tend to infinity. In this paper we adopt a different, though equally natural point of view: we investigate the statistical properties of the same objects, but with respect to the so-called graph-based distribution, recently introduced by Bassino, Nicaud and Weil. Here, subgroups (and finite presentations) are determined by randomly chosen Stallings graphs whose number of vertices tends to infinity. Our results show that these two distributions behave quite differently from each other, shedding a new light on which properties of finitely generated subgroups can be considered frequent or rare. For example, we show that malnormal subgroups of a free group are negligible in the raph-based distribution, while they are exponentially generic in the word-based distribution. Quite surprisingly, a random finite presentation generically presents the trivial group in this new distribution, while in the classical one it is known to generically present an infinite hyperbolic group.