581 resultados para hydrogenation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfur is a major poison to noble metal catalysts for deep aromatic hydrogenation in the petroleum refining industry. In order to study the sulfur resistance of Pd-based catalysts, a series of Pd, Cr, and PdCr catalysts supported on HY-Al2O3 were studied by NH3-TPD, pyridine-adsorption IR, TPR, IR spectra of adsorbed CO, and toluene hydrogenation in the presence of 3000 ppm sulfur as thiophene under the following conditions: 533-573 K, 4.2 MPa, and WHSV 4.0 h(-1). Cr has no influence on the acidity of the catalysts. TPR patterns and in situ IR spectra of adsorbed CO revealed a strong interaction between Cr and Pd, and the frequency shift of linear bonded CO on Pd indicates that the electron density of Pd decreases with the increase of the Cr/Pd atomic ratio. The catalytic performance of Pd, Cr, and PdCr catalysts shows that the sulfur resistance of Pd is strongly enhanced by Cr, and the activity reaches its maximum when the Cr/Pd atomic ratio equals 8. The active phase model "Pd particles decorated by Cr2O3" is postulated to explain the behavior of PdCr catalysts. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of a suitable amount of PPh3 to PdCl2 or PdCl2(PhCN)(2) in situ can considerably increase the catalytic activity in the hydrogenation of nitrobenzene, while the catalytic activities of PdCl2 (reduced)+PPh3, PdCl2(PPh3)(2) and Pd(PPh3)(4) are very poor. The poisoning of catalyst by mercury indicates that the catalytically active species are composed of Pd(0) colloidal particles. Transmission electron micrographs show that the size of nanometric Pd(0) particles of PdCl2 with PPh3 added in situ is smaller than that of PhCl2(PPh3) or PdCl2 (reduced)+PPh3. A synergic effect of bimetallic catalysts such as PdCl2+nPPh(3)+NiCl2 (n= 0.5, 1) and PdCl2(PhCN)(2)+PPh3+FeCl3 gives rise to a further increase in the catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the sulfur resistance of noble metal catalysts in the aromatic hydrogenation of diesel fuel, the alloying effect of non-noble metals with Pd was studied. Toluene hydrogenation over Pd and Pd-M bimetallic catalysts (M = Cr, W,La, Mn, Mo, Ag) on a mixed HY-Al2O3 support was investigated in the presence of 3000 ppm sulfur as thiophene in the feedstock. The results showed that the addition of the second metals strongly affected the activity of toluene hydrogenation, which suggests that the sulfur resistibility of Pd-M bimetallic catalysts is much different from single Pd. La, Mn, Mo and Ag decreased the sulfur resistance of the palladium catalysts. For example, the toluene conversion at 553 K was observed to decrease sharply from 39.4 wt.% on Pd to 1.6 wt.% on Pd-Ag, which is by a factor of 25. One of the important findings in this article is that Cr and W increase hydrogenation activity of Pd catalysts. The reactions occurring on these catalysts include hydrogenation, isomerization and hydrocracking, The addition of the second metals has no noticeable effects on the hydrogenation and isomerization selectivity, but it slightly suppresses hydrocracking reactions. The four typical catalysts, Pd-Cr, Pd-W, Pd-Ag and Pd were characterized by infrared (IR) spectroscopy of pyridine and CO. LR spectra of CO revealed the strong interaction between Pd and the second metal as Cr, W and Ag (or their oxide), indicating that the improvement in sulfur resistance originates from electron-deficient Pd with the addition of second metals. (C) 2001 Elsevier Science B.V. All rights reserved.