854 resultados para human equilibrative nucleoside transporter 1 (hENT1)
Resumo:
The transformation of ethylene oxide (EO), propylene oxide (PO) and 1- butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO >> 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr >> EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Resumo:
In order to find compounds with superior anti human immunodeficiency virus type 1 (HIV-1) activity, twelve simple N-arylsulfonylindoles (3a-1) were synthesized and preliminarily evaluated as HIV-1 inhibitors in vitro for the first time. Several compounds
Resumo:
AIM: To study the interaction between human interleukin-16 (IL-16) and the receptor CD4 (T-lymphocyte differentiation antigen) of human immunodeficiency virus type 1 (HIV-1). METHODS: Two structurally con served regions (SCRs) of human IL-16 were built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of human interleukin-1 (HIL-4) and HIL-2 as the templates. The coordinates for amino-terminal residue sequence, carboxyl-terminal residue sequences, and cytoplasm loops were generated using Biopolymer's LOOP SEARCH algorithm. RESULTS: HIL-16 first formed a homodimer, then contacted with CD4 dimer further forming a dimeric complex. Subsequently, the dimeric complex constructed the tetrameric complex by two disulfide bridges between the cysteines of HIL-16 (Cys31-Cys31). CONCLUSION: The interaction model is useful to propose the action mechanism of HIL-16 and is beneficial for rational designing of novel anti-HIV drugs.
Resumo:
Human T lymphotrophic virus type 1 (HTLV-I) associated leukaemia has a poor prognosis even with chemotherapy. We describe a patient with adult T-cell leukaemia treated with allogeneic bone marrow transplantation from an HTLV-I negative identical sibling donor. During follow-up after bone marrow transplantation, HTLV-I could be repeatedly isolated inspite of anti-viral prophylaxis. The patient died of an acute encephalitis and HTLV-I could be detected in autopsy material from the brain. By a PCR-based technique using short tandem repeats (STRs) it was shown that the patient's haemopoiesis was of donor origin. This shows the infection of donor cells in vivo by an aetiological agent which has been implicated in the leukaemogenic process for adult T-cell leukaemia.
Resumo:
Background. Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. Methods. On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). Results. Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had 1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. Conclusions. Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort populations.
Resumo:
The outer domain (OD) of human immunodeficiency virus (HIV)-1 gp120 represents an attractive, if difficult, target for a beneficial immune response to HIV infection. Unlike the entire gp120, the OD is structurally stable and contains the surfaces that interact with both the primary and secondary cellular receptors. The primary strain-specific neutralizing target, the V3 loop, lies within the OD, as do epitopes for two cross-reactive neutralizing monoclonal antibodies (mAbs), b12 and 2G12, and the contact sites for a number of inhibitory lectins. The OD is poorly immunogenic, at least in the context of complete gp120, but purposeful OD immunization can lead to a substantial antibody response. Here, we map the antibody generated following immunization with a clade C OD. In contrast to published data for the clade B OD, the majority of the polyclonal response to the complete clade C OD is to the V3 loop; deletion of the loop substantially reduces immunogenicity. When the loop sequence was substituted for the epitope for 2F5, a well-characterized human cross-neutralizing mAb, a polyclonal response to the epitope was generated. A panel of mAbs against the clade C OD identified two mAbs that reacted with the loop and were neutralizing for clade C but not B isolates. Other mAbs recognized both linear and conformational epitopes in the OD. We conclude that, as for complete gp120, V3 immunodominance is a property of OD immunogens, that the responses can be neutralizing and that it could be exploited for the presentation of other epitopes.
Resumo:
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the recruitment of signaling proteins that bind by way of Src-homology domain 2 interactions. Proteins that have been implicated in the negative regulation of cellular activation by ITIM-bearing receptors include the tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of immunoreceptor tyrosine-based activatory motif (ITAM)-bearing receptors such as the collagen receptor GPVI-Fc receptor gamma-chain complex on platelets leads to activation. Increasing evidence suggests that ITIM- and ITAM-containing receptors may act antagonistically when expressed on the same cell. In this study it is demonstrated that cross-linking PECAM-1 inhibits the aggregation and secretion of platelets in response to collagen and the GPVI-selective agonist convulxin. In these experiments thrombin-mediated platelet aggregation and secretion were also reduced, albeit to a lesser degree than for collagen, suggesting that PECAM-1 function may not be restricted to the inhibition of ITAM-containing receptor pathways. PECAM-1 activation also inhibited platelet protein tyrosine phosphorylation stimulated by convulxin and thrombin; this was accompanied by inhibition of the mobilization of calcium from intracellular stores. These data suggest that PECAM-1 may play a role in the regulation of platelet function in vivo.
Resumo:
BACKGROUND: In recent years, treatment options for human immunodeficiency virus type 1 (HIV-1) infection have changed from nonboosted protease inhibitors (PIs) to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) and boosted PI-based antiretroviral drug regimens, but the impact on immunological recovery remains uncertain. METHODS: During January 1996 through December 2004 [corrected] all patients in the Swiss HIV Cohort were included if they received the first combination antiretroviral therapy (cART) and had known baseline CD4(+) T cell counts and HIV-1 RNA values (n = 3293). For follow-up, we used the Swiss HIV Cohort Study database update of May 2007 [corrected] The mean (+/-SD) duration of follow-up was 26.8 +/- 20.5 months. The follow-up time was limited to the duration of the first cART. CD4(+) T cell recovery was analyzed in 3 different treatment groups: nonboosted PI, NNRTI, or boosted PI. The end point was the absolute increase of CD4(+) T cell count in the 3 treatment groups after the initiation of cART. RESULTS: Two thousand five hundred ninety individuals (78.7%) initiated a nonboosted-PI regimen, 452 (13.7%) initiated an NNRTI regimen, and 251 (7.6%) initiated a boosted-PI regimen. Absolute CD4(+) T cell count increases at 48 months were as follows: in the nonboosted-PI group, from 210 to 520 cells/muL; in the NNRTI group, from 220 to 475 cells/muL; and in the boosted-PI group, from 168 to 511 cells/muL. In a multivariate analysis, the treatment group did not affect the response of CD4(+) T cells; however, increased age, pretreatment with nucleoside reverse-transcriptase inhibitors, serological tests positive for hepatitis C virus, Centers for Disease Control and Prevention stage C infection, lower baseline CD4(+) T cell count, and lower baseline HIV-1 RNA level were risk factors for smaller increases in CD4(+) T cell count. CONCLUSION: CD4(+) T cell recovery was similar in patients receiving nonboosted PI-, NNRTI-, and boosted PI-based cART.
Resumo:
BACKGROUND:Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. METHODS:On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). RESULTS:Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had >or= 1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. CONCLUSIONS:Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort populations.
Resumo:
Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.
Resumo:
PURPOSE Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the (125)iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer (125)I-GLP-1(7-36)amide. METHODS Receptor autoradiography studies with (125)I-GLP-1(7-36)amide agonist or (125)I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. RESULTS The antagonist (125)I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer (125)I-GLP-1(7-36)amide. For comparison, (125)I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. CONCLUSION The GLP-1 receptor antagonist exendin(9-39) labelled with (125)I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients.
Resumo:
The serotonin (5-hydroxtryptamine, 5-HT) system plays a role in analgesia and emesis. The aim of this study was to test whether opioids or ketamine inhibit the human 5-HT transporter and whether this increases free plasma 5-HT concentrations. HEK293 cells, stably transfected with the human 5-HT transporter cDNA, were incubated with morphine, hydromorphone, fentanyl, alfentanil, pethidine (meperidine), tramadol, ketamine, and the reference substance citalopram (specific 5-HT transporter inhibitor). The uptake of [(3)H]5-HT was measured by liquid scintillation counting. In a second series of experiments, study drugs were incubated with plasma of ten healthy blood donors and change of 5-HT plasma-concentrations were measured (ELISA). The end point was the inhibition of the 5-HT transporter by different analgesics either in HEK293 cells or in human platelets ex vivo. Tramadol, pethidine, and ketamine suppressed [(3)H]5-HT uptake dose-dependently with an IC50 of 1, 20.9, and 230 μM, respectively. These drugs also prevented 5-HT uptake in platelets with an increase in free plasma 5-HT. Free 5-HT concentrations in human plasma were increased by citalopram 1 μM, tramadol 20 μM, pethidine 30 μM, and ketamine 100 μM to 280 [248/312]%, 269 [188/349]%, and 149 [122/174]%, respectively, compared to controls without any co-incubation (means [95 % CI]; all p < 0.005). No change in both experimental settings was observed for the other opioids. Tramadol and pethidine inhibited the 5-HT transporter in HEK293 cells and platelets. This inhibition may contribute to serotonergic effects when these opioids are given in combination, e.g., with monoamine oxidase inhibitors or selective serotonin reuptake inhibitors.
Resumo:
Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.
Resumo:
In this study, we report the case of a patient infected with human immunodeficiency virus (HIV)-1 who developed ataxia and neurocognitive impairment due to viral escape within the central nervous system (CNS) with a multidrug-resistant HIV-1 despite long-term viral suppression in plasma. Antiretroviral therapy optimization with drugs with high CNS penetration led to viral suppression in the CSF, regression of ataxia, and improvement of neurocognitive symptoms.