910 resultados para hough transform
Resumo:
We propose a method to encode a 3D magnetic resonance image data and a decoder in such way that fast access to any 2D image is possible by decoding only the corresponding information from each subband image and thus provides minimum decoding time. This will be of immense use for medical community, because most of the PET and MRI data are volumetric data. Preprocessing is carried out at every level before wavelet transformation, to enable easier identification of coefficients from each subband image. Inclusion of special characters in the bit stream facilitates access to corresponding information from the encoded data. Results are taken by performing Daub4 along x (row), y (column) direction and Haar along z (slice) direction. Comparable results are achieved with the existing technique. In addition to that decoding time is reduced by 1.98 times. Arithmetic coding is used to encode corresponding information independently
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator.The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
This paper presents the design of the area optimized integer two dimensional discrete cosine transform (2-D DCT) used in H.264/AVC codecs. The 2-D DCT calculation is performed by utilizing the separability property, in such a way that 2-D DCT is divided into two 1-D DCT calculation that are joined through a common memory. Due to its area optimized approach, the design will find application in mobile devices. Verilog hardware description language (HDL) in cadence environment has been used for design, compilation, simulation and synthesis of transform block in 0.18 mu TSMC technology.
Resumo:
Abstract—DC testing of parametric faults in non-linear analog circuits based on a new transformation, entitled, V-Transform acting on polynomial coefficient expansion of the circuit function is presented. V-Transform serves the dual purpose of monotonizing polynomial coefficients of circuit function expansion and increasing the sensitivity of these coefficients to circuit parameters. The sensitivity of V-Transform Coefficients (VTC) to circuit parameters is up to 3x-5x more than sensitivity of polynomial coefficients. As a case study, we consider a benchmark elliptic filter to validate our method. The technique is shown to uncover hitherto untestable parametric faults whose sizes are smaller than 10 % of the nominal values. I.
Resumo:
H.264 is a video codec standard which delivers high resolution video even at low bit rates. To provide high throughput at low bit rates hardware implementations are essential. In this paper, we propose hardware implementations for speed and area optimized DCT and quantizer modules. To target above criteria we propose two architectures. First architecture is speed optimized which gives a high throughput and can meet requirements of 4096x2304 frame at 30 frames/sec. Second architecture is area optimized and occupies 2009 LUTs in Altera’s stratix-II and can meet the requirements of 1080HD at 30 frames/sec.
Resumo:
The ztransform method is a widely used tool for the analysis and synthesis of discrete systems. In this note a table of ztransform pairs when F(z) is an irrational function of z is given. The table is also useful for obtaining closed-form sums for some infinite series.
Resumo:
Wavelet transform analysis of projected fringe pattern for phase recovery in 3-D shape measurement of objects is investigated. The present communication specifically outlines and evaluates the errors that creep in to the reconstructed profiles when fringe images do not satisfy periodicity. Three specific cases that give raise to non-periodicity of fringe image are simulated and leakage effects caused by each one of them are analyzed with continuous complex Morlet wavelet transform. Same images are analyzed with FFT method to make a comparison of the reconstructed profiles with both methods. Simulation results revealed a significant advantage of wavelet transform profilometry (WTP), that the distortions that arise due to leakage are confined to the locations of discontinuity and do not spread out over the entire projection as in the case of Fourier transform profilometry (FTP).
Resumo:
Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH3 (methyl) stretching bands at 2872 and 2960 cm1, which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm1, which originates from stretching vibrations of CH2 (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH2 stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH2 groups, we hypothesized that CH2 vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH2 vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH2 stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This article gives a brief review of microwave spectroscopy and the experimental techniques used for obtaining microwave spectrum of molecules and complexes since 1950s. It presents a brief summary of the pulsed nozzle Fourier transform microwave (PNFTMW) spectrometer, fabricated in our laboratory, and discusses some of the important results obtained using the spectrometer. The most significant among the results from this spectrometer is the direct structural determination of weakly bound complexes involving H2O/H2S. These have challenged the conventional wisdom on hydrogen bonding leading us to propose a modern definition for the same through IUPAC. The limitations of the PNFTMW spectrometer and the need for the new chirped pulse Fourier transform microwave spectrometer are discussed as well. Moreover, preliminary results from our laboratory on generating a 1 A mu s chirped pulse of 1 GHz bandwidth are given.
Resumo:
We propose a Riesz transform approach to the demodulation of digital holograms. The Riesz transform is a higher-dimensional extension of the Hilbert transform and is steerable to a desired orientation. Accurate demodulation of the hologram requires a reliable methodology by which quadrature-phase functions (or simply, quadratures) can be constructed. The Riesz transform, by itself, does not yield quadratures. However, one can start with the Riesz transform and construct the so-called vortex operator by employing the notion of quasi-eigenfunctions, and this approach results in accurate quadratures. The key advantage of using the vortex operator is that it effectively handles nonplanar fringes (interference patterns) and has the ability to compensate for the local orientation. Therefore, this method results in aberration-free holographic imaging even in the case when the wavefronts are not planar. We calibrate the method by estimating the orientation from a reference hologram, measured with an empty field of view. Demodulation results on synthesized planar as well as nonplanar fringe patterns show that the accuracy of demodulation is high. We also perform validation on real experimental measurements of Caenorhabditis elegans acquired with a digital holographic microscope. (c) 2012 Optical Society of America
Resumo:
Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/ mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnf alpha and Ifn gamma in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.
Resumo:
A CMOS gas sensor array platform with digital read-out containing 27 sensor pixels and a reference pixel is presented. A signal conditioning circuit at each pixel includes digitally programmable gain stages for sensor signal amplification followed by a second order continuous time delta sigma modulator for digitization. Each sensor pixel can be functionalized with a distinct sensing material that facilitates transduction based on impedance change. Impedance spectrum (up to 10 KHz) of the sensor is obtained off-chip by computing the fast Fourier transform of sensor and reference pixel outputs. The reference pixel also compensates for the phase shift introduced by the signal processing circuits. The chip also contains a temperature sensor with digital readout for ambient temperature measurement. A sensor pixel is functionalized with polycarbazole conducting polymer for sensing volatile organic gases and measurement results are presented. The chip is fabricated in a 0.35 CMOS technology and requires a single step post processing for functionalization. It consumes 57 mW from a 3.3 V supply.