881 resultados para fuzzy logic control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a stress detection system based on fuzzy logic and the physiological signals heart rate and galvanic skin response. The main contribution of this method relies on the creation of a stress template, collecting the behaviour of previous signals under situations with a different level of stress in each individual. The creation of this template provides an accuracy of 99.5% in stress detection, improving the results obtained by current pattern recognition techniques like GMM, k-NN, SVM or Fisher Linear Discriminant. In addition, this system can be embedded in security systems to detect critical situations in accesses as cross-border control. Furthermore, its applications can be extended to other fields as vehicle driver state-of-mind management, medicine or sport training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal de esta Tesis es extender la utilización del “Soft- Computing” para el control de vehículos sin piloto utilizando visión. Este trabajo va más allá de los típicos sistemas de control utilizados en entornos altamente controlados, demonstrando la fuerza y versatilidad de la lógica difusa (Fuzzy Logic) para controlar vehículos aéreos y terrestres en un abanico de applicaciones diferentes. Para esta Tesis se ha realizado un gran número de pruebas reales en las cuales los controladores difusos han manejado una plataforma visual “pan-and-tilt”, un helicoptero, un coche comercial y hasta dos tipos de quadrirotores. El uso del método de optimización “Cross-Entropy” ha sido utilizado para mejorar el comportamiento de algunos de los controladores borrosos. Todos los controladores difusos presentados en ésta Tesis han sido implementados utilizando un código desarrollado por el candidato para tal efecto, llamado MOFS (Miguel Olivares’ Fuzzy Software). Diferentes algoritmos visuales han sido utilizados para adquirir la informaci´on visual del entorno, “Cmashift”, descomposición de la homografía y detección de marcas de realidad aumentada, entre otros. Dicha información visual ha sido utilizada como entrada de los controladores difusos para comandar los vehículos en las diferentes applicaciones autonomas. El volante de un vehículo comercial ha sido controlado para realizar pruebas de conducción autónoma en condiciones de tráfico similares a las de una ciudad. El sistema ha llegado a completar con éxito pruebas de más de 6 km sin ninguna interacción humana, mediante el seguimiento de una línea pintada en el suelo. El limitado campo visual del sistema no ha sido impedimento para alcanzar velocidades de hasta 48 km/h y ser guiado autonomamente en curvas de radio reducido. Objetos estáticos y móviles han sido seguidos desde un helicoptero no tripulado, mediante el control de una plataforma visual “pan-and-tilt”. ´Éste mismo helicoptero ha sido controlado completamente para su aterrizaje autonomo, mediante el control del movimiento lateral (roll), horizontal (pitch) y de altitud. El seguimiento de objetos volantes ha sido resulto mediante el control horizontal (pitch) y de orientación (heading) de un quadrirotor. Para tareas de evitación de obstáculos se ha implementado un controlador difuso para el manejo de la orientación (heading) de un quadrirotor. En el campo de la optimización de controladores se ha aportado al estado del arte una extensión del uso del método “Cross-Entropy”. Está Tesis presenta una novedosa implementación de dicho método para la optimización de las ganancias, la posición y medida de los conjuntos de las funciones de pertenecia y el peso de las reglas para mejorar el comportamiento de un controlador difuso. Dichos procesos de optimización se han realizado utilizando “ROS” y “Matlab Simulink” para obtener mejores resultados para la evitación de colisiones con vehículos aéreos no tripulados. Ésta Tesis demuestra que los controladores implementados con lógica difusa son altamente capaces de controlador sistemas sin tener en cuenta el modelo del vehículo a controlador en entornos altamente perturbables con un sensor de bajo coste como es una cámara. El ruido presentes causado por los cambios de iluminación en la adquisición de imágenes y la alta incertidumbre en la detección visual han sido manejados satisfactoriamente por ésta técnica de de “Soft-Computing” para distintas aplicaciones tanto con vehículos aéreos como terrestres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an adaptation of the Cross-Entropy (CE) method to optimize fuzzy logic controllers. The CE is a recently developed optimization method based on a general Monte-Carlo approach to combinatorial and continuous multi-extremal optimization and importance sampling. This work shows the application of this optimization method to optimize the inputs gains, the location and size of the different membership functions' sets of each variable, as well as the weight of each rule from the rule's base of a fuzzy logic controller (FLC). The control system approach presented in this work was designed to command the orientation of an unmanned aerial vehicle (UAV) to modify its trajectory for avoiding collisions. An onboard looking forward camera was used to sense the environment of the UAV. The information extracted by the image processing algorithm is the only input of the fuzzy control approach to avoid the collision with a predefined object. Real tests with a quadrotor have been done to corroborate the improved behavior of the optimized controllers at different stages of the optimization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis está orientada al análisis de la supervisión multidistribuida de tres procesos agroalimentarios: el secado solar, el transporte refrigerado y la fermentación de café, a través de la información obtenida de diferentes dispositivos de adquisición de datos, que incorporan sensores, así como el desarrollo de metodologías de análisis de series temporales, modelos y herramientas de control de procesos para la ayuda a la toma de decisiones en las operaciones de estos entornos. En esta tesis se han utilizado: tarjetas RFID (TemTrip®) con sistema de comunicación por radiofrecuencia y sensor de temperatura; el registrador (i-Button®), con sensor integrado de temperatura y humedad relativa y un tercer prototipo empresarial, módulo de comunicación inalámbrico Nlaza, que integra un sensor de temperatura y humedad relativa Sensirion®. Estos dispositivos se han empleado en la conformación de redes multidistribuidas de sensores para la supervisión de: A) Transportes de producto hortofrutícola realizados en condiciones comerciales reales, que son: dos transportes terrestre de producto de IV gama desde Murcia a Madrid; transporte multimodal (barco-barco) de limones desde Montevideo (Uruguay) a Cartagena (España) y transporte multimodal (barco-camión) desde Montevideo (Uruguay) a Verona (Italia). B) dos fermentaciones de café realizadas en Popayán (Colombia) en un beneficiadero. Estas redes han permitido registrar la dinámica espacio-temporal de temperaturas y humedad relativa de los procesos estudiados. En estos procesos de transporte refrigerado y fermentación la aplicación de herramientas de visualización de datos y análisis de conglomerados, han permitido identificar grupos de sensores que presentan patrones análogos de sus series temporales, caracterizando así zonas con dinámicas similares y significativamente diferentes del resto y permitiendo definir redes de sensores de menor densidad cubriendo las diferentes zonas identificadas. Las metodologías de análisis complejo de las series espacio-temporales (modelos psicrométricos, espacio de fases bidimensional e interpolaciones espaciales) permitieron la cuantificación de la variabilidad del proceso supervisado tanto desde el punto de vista dinámico como espacial así como la identificación de eventos. Constituyendo así herramientas adicionales de ayuda a la toma de decisiones en el control de los procesos. Siendo especialmente novedosa la aplicación de la representación bidimensional de los espacios de fases en el estudio de las series espacio-temporales de variables ambientales en aplicaciones agroalimentarias, aproximación que no se había realizado hasta el momento. En esta tesis también se ha querido mostrar el potencial de un sistema de control basado en el conocimiento experto como es el sistema de lógica difusa. Se han desarrollado en primer lugar, los modelos de estimación del contenido en humedad y las reglas semánticas que dirigen el proceso de control, el mejor modelo se ha seleccionado mediante un ensayo de secado realizado sobre bolas de hidrogel como modelo alimentario y finalmente el modelo se ha validado mediante un ensayo en el que se deshidrataban láminas de zanahoria. Los resultados sugirieron que el sistema de control desarrollado, es capaz de hacer frente a dificultades como las variaciones de temperatura día y noche, consiguiendo un producto con buenas características de calidad comparables a las conseguidas sin aplicar ningún control sobre la operación y disminuyendo así el consumo energético en un 98% con respecto al mismo proceso sin control. La instrumentación y las metodologías de análisis de datos implementadas en esta Tesis se han mostrado suficientemente versátiles y transversales para ser aplicadas a diversos procesos agroalimentarios en los que la temperatura y la humedad relativa sean criterios de control en dichos procesos, teniendo una aplicabilidad directa en el sector industrial ABSTRACT This thesis is focused on the analysis of multi-distributed supervision of three agri-food processes: solar drying, refrigerated transport and coffee fermentation, through the information obtained from different data acquisition devices with incorporated sensors, as well as the development of methodologies for analyzing temporary series, models and tools to control processes in order to help in the decision making in the operations within these environments. For this thesis the following has been used: RFID tags (TemTrip®) with a Radiofrequency ID communication system and a temperature sensor; the recorder (i-Button®), with an integrated temperature and relative humidity and a third corporate prototype, a wireless communication module Nlaza, which has an integrated temperature and relative humidity sensor, Sensirion®. These devices have been used in creating three multi-distributed networks of sensors for monitoring: A) Transport of fruits and vegetables made in real commercial conditions, which are: two land trips of IV range products from Murcia to Madrid; multimodal transport (ship - ship) of lemons from Montevideo (Uruguay) to Cartagena (Spain) and multimodal transport (ship - truck) from Montevideo (Uruguay) to Verona (Italy). B) Two coffee fermentations made in Popayan (Colombia) in a coffee processing plant. These networks have allowed recording the time space dynamics of temperatures and relative humidity of the processed under study. Within these refrigerated transport and fermentation processes, the application of data display and cluster analysis tools have allowed identifying sensor groups showing analogical patterns of their temporary series; thus, featuring areas with similar and significantly different dynamics from the others and enabling the definition of lower density sensor networks covering the different identified areas. The complex analysis methodologies of the time space series (psychrometric models, bi-dimensional phase space and spatial interpolation) allowed quantifying the process variability of the supervised process both from the dynamic and spatial points of view; as well as the identification of events. Thus, building additional tools to aid decision-making on process control brought the innovative application of the bi-dimensional representation of phase spaces in the study of time-space series of environmental variables in agri-food applications, an approach that had not been taken before. This thesis also wanted to show the potential of a control system based on specialized knowledge such as the fuzzy logic system. Firstly, moisture content estimation models and semantic rules directing the control process have been developed, the best model has been selected by an drying assay performed on hydrogel beads as food model; and finally the model has been validated through an assay in which carrot sheets were dehydrated. The results suggested that the control system developed is able to cope with difficulties such as changes in temperature daytime and nighttime, getting a product with good quality features comparable to those features achieved without applying any control over the operation and thus decreasing consumption energy by 98% compared to the same uncontrolled process. Instrumentation and data analysis methodologies implemented in this thesis have proved sufficiently versatile and cross-cutting to apply to several agri-food processes in which the temperature and relative humidity are the control criteria in those processes, having a direct effect on the industry sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no 10º Congresso Nacional de Sismologia e Engenharia Sísmica, 20-22 abril de 2016, Ponta Delgada, Açores, Portugal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric power systems are getting more complex and covering larger areas day by day. This fact has been contribuiting to the development of monitoring techniques that aim to help the analysis, control and planning of power systems. Supervisory Control and Data Acquisition (SCADA) systems, Wide Area Measurement Systems and disturbance record systems. Unlike SCADA and WAMS, disturbance record systems are mainly used for offilne analysis in occurrences where a fault resulted in tripping of and apparatus such as a transimission line, transformer, generator and so on. The device responsible for record the disturbances is called Digital Fault Recorder (DFR) and records, basically, electrical quantities as voltage and currents and also, records digital information from protection system devices. Generally, in power plants, all the DFRs data are centralized in the utility data centre and it results in an excess of data that difficults the task of analysis by the specialist engineers. This dissertation shows a new methodology for automated analysis of disturbances in power plants. A fuzzy reasoning system is proposed to deal with the data from the DFRs. The objective of the system is to help the engineer resposnible for the analysis of the DFRs’s information by means of a pre-classification of data. For that, the fuzzy system is responsible for generating unit operational state diagnosis and fault classification.