820 resultados para fuzzy linear system
Resumo:
Kuvien laatu on tutkituimpia ja käytetyimpiä aiheita. Tässä työssä tarkastellaan värin laatu ja spektrikuvia. Työssä annetaan yleiskuva olemassa olevista pakattujen ja erillisten kuvien laadunarviointimenetelmistä painottaen näiden menetelmien soveltaminen spektrikuviin. Tässä työssä esitellään spektriväriulkomuotomalli värikuvien laadunarvioinnille. Malli sovelletaan spektrikuvista jäljennettyihin värikuviin. Malli pohjautuu sekä tilastolliseen spektrikuvamalliin, joka muodostaa yhteyden spektrikuvien ja valokuvien parametrien välille, että kuvan yleiseen ulkomuotoon. Värikuvien tilastollisten spektriparametrien ja fyysisten parametrien välinen yhteys on varmennettu tietokone-pohjaisella kuvamallinnuksella. Mallin ominaisuuksien pohjalta on kehitetty koekäyttöön tarkoitettu menetelmä värikuvien laadunarvioinnille. On kehitetty asiantuntija-pohjainen kyselymenetelmä ja sumea päättelyjärjestelmä värikuvien laadunarvioinnille. Tutkimus osoittaa, että spektri-väri –yhteys ja sumea päättelyjärjestelmä soveltuvat tehokkaasti värikuvien laadunarviointiin.
Resumo:
This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H1 and H2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H1 and H2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H1 and H2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H1, while for H2, it was 0.23%; indicating the system efficiency in decision-making.
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
Modeling nonlinear systems using Volterra series is a century old method but practical realizations were hampered by inadequate hardware to handle the increased computational complexity stemming from its use. But interest is renewed recently, in designing and implementing filters which can model much of the polynomial nonlinearities inherent in practical systems. The key advantage in resorting to Volterra power series for this purpose is that nonlinear filters so designed can be made to work in parallel with the existing LTI systems, yielding improved performance. This paper describes the inclusion of a quadratic predictor (with nonlinearity order 2) with a linear predictor in an analog source coding system. Analog coding schemes generally ignore the source generation mechanisms but focuses on high fidelity reconstruction at the receiver. The widely used method of differential pnlse code modulation (DPCM) for speech transmission uses a linear predictor to estimate the next possible value of the input speech signal. But this linear system do not account for the inherent nonlinearities in speech signals arising out of multiple reflections in the vocal tract. So a quadratic predictor is designed and implemented in parallel with the linear predictor to yield improved mean square error performance. The augmented speech coder is tested on speech signals transmitted over an additive white gaussian noise (AWGN) channel.
Resumo:
In der vorliegenden Dissertation wurden kreuzkonjugierte organische Verbindungen basierend auf Diazafluorenmethyliden- sowie Dipyridylmethyliden-Bausteinen synthetisiert, die zum einen photoredoxaktive Metallfragmente komplexieren können und zum anderen erweiterte π-konjugierte Pfade auf der Grundlage von Alkineinheiten ermöglichen. Das kreuzkonjugierte Motiv wurde über die Kupplung von Alkineinheiten an halogenierte Methyliden-Einheiten, den so genannten Dibromolefinen, zugänglich gemacht. Zur Synthese von Dibromolefinen wurden verschiedene Methoden untersucht. Literaturbekannte Methoden wie die Wittig-Reaktion und ihre Modifikationen sowie die Corey-Fuchs-Reaktion konnten für die Diazafluoreneinheit nicht erfolgreich angewendet werden. Bei einer mikrowellenunterstützten Reaktion konnte sowohl ausgehend von Diazafluoren-9-on als auch von Di-2-pyridylketon eine Dibromolefinierung (55 % und 65 %) erreicht werden. Die Eignung der Mikrowellenstrahlung für Dibromolefinierungsreaktionen nach Corey und Fuchs wurde weiterhin an verschiedenen Aldehyden und Ketonen untersucht. In den meisten Fällen konnten gute bis sehr gute Ergebnisse erzielt werden. Durch die erfolgreiche Synthese von Dibromolefinen über Mikrowellensynthese wurde die Realisierung von diversen π-konjugierten Systemen möglich. Dies erfolgte exemplarisch durch die Kupplung der Alkine 5-Ethinyl-2,2’-bipyridin, 1-(Ferrocenylethinyl)-4-(ethinyl)benzol, Tri(tolyl)propin sowie der TIPS- und TMS-Acetylene. Neben der Vielfalt an Möglichkeiten zur Funktionalisierung von Dipyridyl- und Diazafluorenbausteinen zeigte sich zudem, dass sogar räumlich anspruchsvolle Verbindungen wie die geminale angeordneten voluminösen Tri(tolyl)propinyl-Substituenten an der Doppelbindung erfolgreich synthetisiert werden können. Die Koordinationseigenschaften der neu synthetisierten Verbindungen konnten durch Umsetzungen der Diazafluoren- und Dipyridylverbindungen mit PdCl2 und [RuCl2(bpy)2] erfolgreich gezeigt werden. Im Hinblick auf die Herstellung von Funktionsmaterialien eignen sich die Endiin-Strukturmotive aufgrund von diversen Variationsmöglichkeiten wie Koordination von Übergangsmetallen sowie Funktionalisierung der Peripherie gut. Dadurch können die elektronischen Eigenschaften wie die Absorption oder elektrochemische Potentiale der Verbindungen modifiziert werden. Die UV/Vis-Spektren der neu synthetisierten Verbindungen zeigen, dass Absorptionen in längerwelligen Bereichen durch Verlängerung des Konjugationspfades gesteuert werden können. Zudem lassen sich weitere photophysikalische Eigenschaften wie MC-, LC-, LMCT- oder MLCT-Übergänge durch Koordination von Metallen generieren. Die elektrochemischen Potentiale der Dipyridyl- und Diazafluorenbausteine konnten durch Anbindung von verschiedenen Substituenten beeinflusst werden. Es zeigte sich, dass sich die Reduktionswellen im Vergleich zu denen der Ketone zu niedrigeren Potentialen verschieben, wenn Alkine an die Dipyridylmethyliden- und Diazafluorenmethyliden-Bausteine geknüpft wurden. Zudem konnte beobachtet werden, dass die Signale nicht immer reversibel sind. Insbesondere die Dipyridylverbindungen zeichneten sich durch irreversible Reduktionswellen aus. Die Realisierung von π-konjugierten Systemen gelang auch mit cyclischen kohlenstoffbasierten Verbindungen. Über das separat synthetisierte 2,2’-Diethinyltolan konnte eine cyclische Verbindung, ein dehydroannulen-radialenisches System, erfolgreich hergestellt werden. Die Koordination von redoxaktiven Metallzentren wie [Ru(bpy)2] konnte für diese Verbindung ebenfalls erfolgreich gezeigt werden. Die elektronische Wechselwirkung zwischen dem Metallzentrum und dem dehydroannulenischen System könnte sowohl über theoretische Methoden (zeitabhängige Dichtefunktionaltheorie) als auch experimentell wie z. B. über transiente Absorptionsspektroskopie untersucht werden. Diese zukünftig durchzuführenden Untersuchungen können Aufschluss über die Ladungstransferraten und -dauer geben. Im Hinblick auf die Realisierung von Modellverbindungen für molekulare Drähte wurden lineare Systeme basierend auf der Diazafluoreneinheit synthetisiert. Zur Synthese von derartigen Systemen war es zunächst notwendig, die Dibromolefine unsymmetrisch zu alkinylieren. Die unsymmetrische Substitution gestaltete sich als Herausforderung, da eine Einfachkupplung mit einem Acetylen nicht möglich war. In den meisten Fällen wurden zweifach substituierte Spezies mit den identischen Alkinen erhalten. Die besten Ausbeuten konnten durch die konsekutive Zugabe von TIPS-Acetylen und darauffolgend TMS-Acetylen in die Reaktionsmischung erhalten werden. Offenbar spielt der räumliche Anspruch des Erstsubstituenten in diesem Zusammenhang eine Rolle. Die selektive Entschützung der unterschiedlich silylierten Verbindungen erfolgte mit K2CO3 in MeOH/THF (1:1). Die oxidative Homokupplungsreaktion erfolgte ohne Isolierung der entschützten Spezies, da diese instabil ist und zur Polymerisation neigt. Aufgrund der Instabilität der entschützten Spezies sowie möglichen Nebenreaktionen waren die Ausbeuten sowohl bei der TIPS-geschützten Verbindung als auch bei der TTP-geschützten Verbindung gering. Versuche, lineare Systeme von dipyridylbasierten Verbindungen zu erhalten, schlugen fehl. Die π-konjugierten Systeme lassen aufgrund der effektiven Überlappung der beteiligten π-Orbitale hohe Ladungsträgermobilitäten vermuten. Die im Rahmen dieser Arbeit synthetisierten Verbindungen könnten mit Schwefelverbindungen die Anbindung an Elektroden zulassen, worüber die Leitfähigkeiten der Verbindungen gemessen werden könnten.
Resumo:
Se basa en un análisis teórico de los sistemas de información como lo es el almacenaje de datos, cubos OLAP e inteligencia de negocios. Seguidamente, se hace un análisis de los sectores económicos de Colombia con un especial interés sobre el sector de alimentos, de esta manera conceptualizar la empresa sobre la cual este trabajo se enfocara. Se encontrará un análisis del caso de éxito Summerwood Corporation, el cual brindará una justificación para la propuesta final presentada a la empresa Dipsa Food, Pyme dedicada a la producción de alimentos no perecederos ubicada en la ciudad de Bogotá D.C –Colombia, la cual tiene gran interés en cuanto al desarrollo de nuevas tecnologías que brinden información fidedigna para la toma de decisiones
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
We model the large scale fading of wireless THz communications links deployed in a metropolitan area taking into account reception through direct line of sight, ground or wall reflection and diffraction. The movement of the receiver in the three dimensions is modelled by an autonomous dynamic linear system in state-space whereas the geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a Wiener model from time-domain measurements of the field intensity.
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.
Resumo:
In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.