1000 resultados para functional thin films
Resumo:
We present a comprehensive study of the thickness dependent structural, magnetic and magnetotransport properties of oriented La0.5Sr0.5CoO3 thin films grown on LaAlO3 by Pulsed Laser Deposition. We observe that these films undergo a reduction in Curie temperature (T-c) with a decrease in film thickness, and it is found to be primarily caused by the finite size effect since the finite scaling law [T-c(infinity) T-c(t)/T-c(infinity) = (c/t)lambda holds good over the studied thickness range. We rule out the contribution from the strain induced suppression of Curie temperature with decreasing film thickness since all the films exhibit a constant out of plane tensile strain (0.5%) irrespective of their varying thickness. However, we observe that the coercivity of the films is an order of magnitude higher than that of the bulk due to the tensile strain. In addition, we also observe an increase in the magneto resistance peak and a decrease in coercivity and electrical resistivity with an increase in film thickness. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.
Resumo:
It has been established by photoemission studies that Ge in obliquely deposited pure Ge and Ge-chalcogenide thin films undergoes predominant photooxidation when irradiated with band gap photons. The role of Ge appears to be that of providing a highly porous low density microstructure and photooxidation seems to be a direct consequence of such large scale porosity in these films. The formation of low vapour pressure oxide fractions of Ge and Te and volatile high vapour pressure oxide fractions of S and Se is responsible for anomalous photoinduced transformations in these films.
Resumo:
High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.
Resumo:
Antiferroelectric lead zirconate thin films were deposited using KrF (248 nm) excimer laser ablation technique. Utilization of antiferroelectric materials is proposed in high charge storage capacitors and microelectromechanical (MEMs) devices. The antiferroelectric nature of lead zirconate thin films was confirmed by the presence of double hysteresis behavior in polarization versus applied field response. By controlling the processing parameters, two types of microstructures evolved, namely columnar (or in-situ) and multi-grained (or ex-situ) in PZ thin films. The dielectric and electrical properties of the lead zirconate thin films were studied with respect to the processing parameters. Analysis on charge transport mechanism, using space charge limited conduction phenomenon, showed the presence of both shallow and deep trap sites in the PZ thin films. The estimated shallow trap energies were 0.448 and 0.491 eV for in-situ and ex-situ films, with respective concentrations of approximate to 7.9 x 10(18)/cc and approximate to 2.97 x 10(18)/cc. The deep trap energies with concentrations were 1.83 eV with 1.4 x 10(16)/cc for ex-situ and 1.76 eV with 3.8 x 10(16)/cc for in-situ PZ thin films, respectively. These activation energies were found to be consistent with the analysis from Arrhenius plots of de current densities. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
The dielectric response of pulsed laser ablated barium strontium titanate thin films were studied as a function of frequency and ambient temperature (from room temperature to 320 degrees C) by employing impedance spectroscopy. Combined modulus and impedance spectroscopic plots were used to study the response of the film, which in general may contain the grain, grain boundary, and the electrode/film interface as capacitive elements. The spectroscopic plots revealed that the major response was due to the grains, while contributions from the grain boundary or the electrode/film interface was negligible. Further observation from the complex impedance plot showed data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the bulk grains. Conductivity plots against frequency at different temperatures suggested a response obeying the 'universal power law'. The value of the activation energies computed from the Arrhenius plots of both ac and dc conductivities with 1000/T were 0.97 and 1.04 eV, respectively. This was found to be in excellent agreement with published literature, and was attributed to the motion of oxygen vacancies within the bulk. (C) 2000 American Institute of Physics. [S0021-8979(00)02801-2].
Resumo:
Compositionally up and downgraded Bi4-x/3Ti3-xVxO12 (x=0.0, 0.012,0.03, 0.06) thin films were grown on Pt coated silicon substrates by pulsed laser deposition technique. Downgraded fabrication showed improved ferroelectric polarization in comparison to upgraded fabrication. Films deposited at 650 and 700 degrees C showed very large remnant polarization (2P(r)) value of 82 mu C cm(-2), which is comparatively large among all bismuth based thin films reported so far. A mechanism based on vanadium enrich seeded layer formation in the downgraded structure is proposed for the improvement. Moreover, frequency independent behavior (100Hz-5kHz) of the graded films ensures its potential application for various microelectronic devices. (c) 2010 American Institute of Physics. [doi :10.1063/1.3431543].
Resumo:
As-deposited high Tc superconducting Y1Ba2Cu3O7−x films with zero resistance temperatures of similar, equals89 K and critical current densities about 0.7×106 A/cm2 at 77 K have been reproducibly fabricated at a substrate holder temperature at 650°C, using pulsed laser deposition, without post-annealing. One key to these results is the injection of gaseous oxygen into laser produced plume just in front of the target. In this way, the correct amount of oxygen is incorporated into the as-grown film so that post-deposition treatment becomes unnecessary. Axial ion channeling in these as-deposit high Tc superconducting films on (100) SrTiO3 and X-ray photoelectron spectroscopy (XPS) on the film surfaces were performed. Angular yield profile near the film surface for Ba, and the surface peak intensity were measured using 3 MeV He ions. For channeling normal to the substrate a minimum yield of 7%, compared to similar, equals3% for single crystals, was obtained. The results of ion channeling and XPS studies indicate that the as-deposited films have good crystallinity as well as toichiometry to within similar, equals1 nm of the film surface. The in-situ growth of such high Tc and Jc films is an important step in the use of the laser deposition technique to fabricate multilayer structures and the surface perfection is of importance in tunneling devices such as Josephson junctions.
Resumo:
The magnetic field induced broadening of the normal to superconducting resistive transition of YBa2Cu3O7−x thin films laser deposited on (100) MgO substrates for field oriented parallel to the c axis is found to be significantly reduced in comparison with that found previously in single crystals and in films deposited on SrTiO3. This reduction in broadening is associated with a high density of defects which, while causing a slight decrease in Tc and an increase in the zero‐field transition width, seems to provide strong vortex pinning centers that reduce flux creep
Resumo:
Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.
Resumo:
Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 mu m. The films showed an electrical resistivity of 6.1 Omega cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (> 10(4) cm(-1)) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.
Resumo:
The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].