956 resultados para fotovoltaico, riciclaggio, gestione rifiuti
Resumo:
Il Lavoro si inserisce nel quadro complesso del settore Energy & Utilities e si propone l’obiettivo di analizzare l’attuale mercato dell’energia per individuarne i driver al cambiamento e presentare un innovativo modello di business per le aziende di vendita di energia, con lo scopo di recuperare efficienza nella gestione del Cliente finale, cercando di quantificarne i vantaggi potenziali. L’attività di studio e progettuale è stata svolta nell’ambito di un periodo di tirocinio formativo della durata di sei mesi, effettuato presso Engineering Ingegneria Informatica S.p.A., in particolare nella sede di viale Masini di Bologna, a seguito della candidatura autonoma dello studente e del suo immediato inserimento nei processi di business della divisione Utilities dell’azienda. Il Lavoro si suddivide in 9 capitoli: dopo una breve introduzione sul settore Energy&Utilities, nei primi quattro capitoli sono descritte le filiere produttive dei principali servizi, i principali attori del mercato e gli aspetti normativi e tariffari che caratterizzano l’intero settore, valutando in particolare la formazione del prezzo del gas e dell’energia elettrica. I capitoli cinque e sei descrivono invece le principali tendenze, le strategie competitive in atto nel mercato delle Utilities e l’importanza del Cliente, in un’ottica di CRM che segue i dettami del modello “Customer Centric”. Gli ultimi capitoli mostrano invece, dopo una breve presentazione dell’azienda in cui lo studente ha svolto l’attività, l’intero lavoro di analisi realizzato, input del modello di business a chiusura del Lavoro, volto a quantificare gli impatti del processo di liberalizzazione che ha radicalmente modificato il settore delle Utilities negli ultimi anni, valutando a proposito la profittabilità per un cliente medio in base ad un’opportuna pre-analisi di segmentazione. Il modello di business che occupa l’ultimo capitolo costituisce una soluzione originale e innovativa per incrementare tale profittabilità.
Resumo:
In order to protect river water quality, highly affected in urban areas by continuos as intermittent immissions, it is necessary to adopt measures to intercept and treat these polluted flows. In particular during rain events, river water quality is affected by CSOs activation. Built in order to protect the sewer system and the WWTP by increased flows due to heavy rains, CSOs divert excess flows to the receiving water body. On the basis of several scientific papers, and of direct evidences as well, that demonstrate the detrimental effect of CSOs discharges, also the legislative framework moved towards a stream standard point of view. The WFD (EU/69/2000) sets new goals for receiving water quality, and groundwater as well, through an integrated immission/emissions phylosophy, in which emission limits are associated with effluent standards, based on the receiving water characteristics and their specific use. For surface waters the objective is that of a “good” ecological and chemical quality status. A surface water is defined as of good ecological quality if there is only slight departure from the biological community that would be expected in conditions of minimal anthropogenic impact. Each Member State authority is responsible for preparing and implementing a River Basin Management Plan to achieve the good ecological quality, and comply with WFD requirements. In order to cope with WFD targets, and thus to improve urban receiving water quality, a CSOs control strategy need to be implemented. Temporarily storing the overflow (or at least part of it) into tanks and treating it in the WWTP, after the end of the storm, showed good results in reducing total pollutant mass spilled into the receiving river. Italian State Authority, in order to comply with WFD statements, sets general framework, and each Region has to adopt a Water Remediation Plan (PTA, Piano Tutela Acque), setting goals, methods, and terms, to improve river water quality. Emilia Romagna PTA sets 25% reduction up to 2008, and 50% reduction up to 2015 fo total pollutants masses delivered by CSOs spills. In order to plan remediation actions, a deep insight into spills dynamics is thus of great importance. The present thesis tries to understand spills dynamics through a numerical and an experimental approach. A four months monitoring and sampling campaign was set on the Bologna sewer network, and on the Navile Channel, that is the WWTP receiving water , and that receives flows from up to 28 CSOs during rain events. On the other hand, the full model of the sewer network, was build with the commercial software InfoWorks CS. The model was either calibrated with the data from the monitoring and sampling campaign. Through further model simulations interdependencies among masses spilled, rain characteristics and basin characteristics are looked for. The thesis can be seen as a basis for further insighs and for planning remediation actions.
Resumo:
This research, carried out during the PhD in Materials Engineering, deals with the creation of layers, with different functionality, deposited on a ceramic substrate, to obtain photovoltaic cells for electricity production. The research activities are included in the project PRRIITT, Measure 4 (Development of Networks), Action A (Research and Technology Transfer Laboratories), Thematic reference 3 (Advanced materials applications development), co-financed by the Emilia Romagna Region, for the creation of CECERBENCH laboratory, which aims to develop "Tiles with a functionalised surface”. The innovation lies in the study of materials and in the development of technologies to achieve a "photovoltaic surface", directly in the tiles production process. The goal is to preserve the technical characteristics, and to make available new surfaces, exploiting renewable energy sources. The realization of Building Integrated PhotoVoltaic (BIPV) is nowadays a more and more spread tendency. The aims of the research are essentially linked to the need to diversify the actual ceramic tile production (which is strongly present in the Emilia Romagna Region ), and to provide a higher added value to the tiles. Solar energy production is the primary objective of the functionalization, and has a relevant ecological impact, taking into account the overwhelming global energy demand. The specific activities of the PhD were carried out according to the achievement of scientific and technological objectives of CECERBENCH laboratory, and involved the collaboration in design solutions, to obtain the cells directly on the tiles surface. The author has managed personally a part of the research project. Layers with different features were made: - Electrically conductive layers, directly on the ceramic tiles surface; - Layers to obtain the photovoltaic functionality; - Electrically insulating, protective layers (double function). For each layer, the most suitable materials have been selected. Among the technical application, the screen printing was used. This technique, widely used in ceramics, has many application areas, including the electronics and photovoltaic industries. It is an inexpensive technique, easy to use in industrial production lines. The screen printing technique was therefore studied in depth by theoretical considerations, and through the use of rheological measurements.
Resumo:
The full exploitation of multi-hop multi-path connectivity opportunities offered by heterogeneous wireless interfaces could enable innovative Always Best Served (ABS) deployment scenarios where mobile clients dynamically self-organize to offer/exploit Internet connectivity at best. Only novel middleware solutions based on heterogeneous context information can seamlessly enable this scenario: middleware solutions should i) provide a translucent access to low-level components, to achieve both fully aware and simplified pre-configured interactions, ii) permit to fully exploit communication interface capabilities, i.e., not only getting but also providing connectivity in a peer-to-peer fashion, thus relieving final users and application developers from the burden of directly managing wireless interface heterogeneity, and iii) consider user mobility as crucial context information evaluating at provision time the suitability of available Internet points of access differently when the mobile client is still or in motion. The novelty of this research work resides in three primary points. First of all, it proposes a novel model and taxonomy providing a common vocabulary to easily describe and position solutions in the area of context-aware autonomic management of preferred network opportunities. Secondly, it presents PoSIM, a context-aware middleware for the synergic exploitation and control of heterogeneous positioning systems that facilitates the development and portability of location-based services. PoSIM is translucent, i.e., it can provide application developers with differentiated visibility of data characteristics and control possibilities of available positioning solutions, thus dynamically adapting to application-specific deployment requirements and enabling cross-layer management decisions. Finally, it provides the MMHC solution for the self-organization of multi-hop multi-path heterogeneous connectivity. MMHC considers a limited set of practical indicators on node mobility and wireless network characteristics for a coarsegrained estimation of expected reliability/quality of multi-hop paths available at runtime. In particular, MMHC manages the durability/throughput-aware formation and selection of different multi-hop paths simultaneously. Furthermore, MMHC provides a novel solution based on adaptive buffers, proactively managed based on handover prediction, to support continuous services, especially by pre-fetching multimedia contents to avoid streaming interruptions.
Resumo:
Studio del terremoto dell'area Hector Mine (California del Sud, 1999) e del terremoto di Haiti (12 Gennaio 2010) mediante l'analisi di coppia di immagini satellitari a medio/alta risoluzione.