359 resultados para fluorescein dianion
Resumo:
Adult and 3-week-old juvenile Fasciola hepatica were examined for the presence of the cytoskeletal protein actin. Techniques of direct fluorescence using fluorescein isothiocyanate (FITC)-phalloidin and of indirect immunofluorescence using a monoclonal anti-actin antibody (MAA) demonstrated actin in the testes, sub-tegumental and gut musculature, tegumental cell bodies and tegumental spines. In contrast, polyclonal anti-actin antibody (PAA) revealed immunostaining only in the vitellaria. Effective removal of the tegument with 1% (w/v) sodium dodecyl sulphate (SDS) was confirmed by scanning electron microscopy (SEM), and this enabled immunoblotting of whole fluke and tegumental fractions with and without spines. Whole fluke fractions produced three bands corresponding to molecules exhibiting relative molecular weights of 43, 28 and 15 kDa, respectively, whereas the tegumental fraction with spines revealed a single band corresponding to 15 kDa in size. The fraction without spines displayed no bands. The present study localised actin in a number of different tissue types within the liver fluke. Using MAA, three forms of actin have been identified in the whole fluke and a single one in the tegumental spines.
Resumo:
Purpose: This study tested the role of K(+)- and Cl(-)-channels in retinal arteriolar smooth muscle in the regulation of retinal blood flow.
Methods: Studies were carried out in adult Male Hooded Lister rats. Selectivity of ion channel blockers was established using electrophysiological recordings from smooth muscle in isolated arterioles under voltage clamp conditions. Leukocyte velocity and retinal arteriolar diameters were measured in anesthetised animals using leukocyte fluorography and fluorescein angiography imaging with a confocal scanning laser ophthalmoscope. These values were used to estimate volumetric flow, which was compared between control conditions and following intravitreal injections of ion channel blockers, either alone or in combination with the vasoconstrictor potent Endothelin 1 (Et1).
Results: Voltage activated K(+)-current (IKv) was inhibited by correolide, large conductance (BK) Ca(2+)-activated K(+)-current (IKCa) by Penitrem A, and Ca(2+)-activated Cl(-)-current (IClCa) by disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). Intravitreal injections (10µl) of DIDS (estimated intraocular concentration 10mM) increased flow by 22%, whereas the BK-blockers Penitrem A (1µM) and iberiotoxin (4µM), and the IKv-inhibitor correolide (40µM) all decreased resting flow by approximately 10%. Et1 (104nM) reduced flow by almost 65%. This effect was completely reversed by DIDS but was unaffected by Penitrem A, iberiotoxin or correolide.
Conclusions: These results suggest that Cl(-)-channels in retinal arteriolar smooth muscle limit resting blood flow and play an obligatory role in Et1 responses. K(+)-channel activity promotes basal flow but exerts little modifying effect on the Et1 response. Cl(-)-channels may be appropriate molecular targets in retinal pathologies characterised by increased Et1 activity and reduced blood flow.
Resumo:
Purpose: To describe associations between reticular pseudodrusen, individual characteristics, and retinal function.
Design: Cohort study.
Participants: We recruited 105 patients (age range, 52–93 years) who had advanced neovascular age-related macular degeneration (AMD) in only 1 eye from 3 clinical centers in Europe.
Methods: Minimum follow-up was 12 months. The eye selected for study was the fellow eye without advanced disease. Clinical measures of vision were distance visual acuity, near visual acuity, and results of the Smith-Kettlewell low-luminance acuity test (SKILL). Fundus imaging included color photography, red-free imaging, blue autofluorescence imaging, fluorescein angiography, indocyanine green angiography, and optical coherence tomography using standardized protocols. These were used to detect progression to neovascular AMD in the study eye during follow-up. All imaging outputs were graded for the presence or absence of reticular pseudodrusen (RPD) using a multimodal approach. Choroidal thickness was measured at the foveal center and at 2 other equidistant locations from the fovea (1500 μm) nasally and temporally. Metrics on retinal thickness and volume were obtained from the manufacturer-supplied automated segmentation readouts.
Main Outcome Measures: Presence of RPD, distance visual acuity, near visual acuity, SKILL score, choroidal thickness, retinal thickness, and retinal volume.
Results: Reticular pseudodrusen was found in 43 participants (41%) on 1 or more imaging method. The SKILL score was significantly worse in those with reticular drusen (mean score ± standard deviation [SD, 38±12) versus those without (mean score ± SD, 33±9) (P = 0.034). Parafoveal retinal thickness, parafoveal retinal volume, and all of the choroidal thickness parameters measured were significantly lower in those with reticular drusen than in those without. The presence of RPD was associated with development of neovascular AMD when corrected for age and sex (odds ratio, 5.5; 95% confidence interval, 1.1–28.8; P = 0.042). All participants in whom geographic atrophy developed during follow-up had visible RPD at baseline.
Conclusions: Significant differences in retinal and choroidal anatomic features, visual function, and risk factor profile exist in unilateral neovascular AMD patients with RPD compared with those without; therefore, such patients should be monitored carefully because of the risk of developing bilateral disease.
Resumo:
The purpose is to study the diagnostic performance of optical coherence tomography (OCT) and alternative diagnostic tests for neovascular age-related macular degeneration (nAMD). Methods employed are as follows:systematic review and meta-analysis; Index test: OCT including time-domain (TD-OCT) and the most recently developed spectral domain (SD-OCT); comparator tests: visual acuity, clinical evaluation (slit lamp), Amsler chart, colour fundus photographs, infra-red reflectance, red-free images/blue reflectance, fundus autofluorescence imaging (FAF), indocyanine green angiography (ICGA), preferential hyperacuity perimetry (PHP), and microperimetry; reference standard: fundus fluorescein angiography. Databases searched included MEDLINE, MEDLINE In Process, EMBASE, Biosis, SCI, the Cochrane Library, DARE, MEDION, and HTA database. Last literature searches: March 2013. Risk of bias assessed using QUADAS-2. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic (HSROC) curves. Twenty-two studies (2 abstracts and 20 articles) enrolling 2124 participants were identified, reporting TD-OCT (12 studies), SD-OCT (1 study), ICGA (8 studies), PHP (3 studies), Amsler grid, colour fundus photography and FAF (1 study each). Most studies were considered to have a high risk of bias in the patient selection (55%, 11/20), and flow and timing (40%, 8/20) domains. In a meta-analysis of TD-OCT studies, sensitivity and specificity (95% CI) were 88% (46–98%) and 78% (64–88%), respectively. There was insufficient information to undertake meta-analysis for other tests. TD-OCT is a sensitive test for detecting nAMD, although specificity was only moderate. Data on SD-OCT are sparse. Diagnosis of nAMD should not rely solely on OCT.
Resumo:
Topic
To compare the accuracy of optical coherence tomography (OCT) with alternative tests for monitoring neovascular age-related macular degeneration (nAMD) and detecting disease activity among eyes previously treated for this condition.
Clinical RelevanceTraditionally, fundus fluorescein angiography (FFA) has been considered the reference standard to detect nAMD activity, but FFA is costly and invasive. Replacement of FFA by OCT can be justified if there is a substantial agreement between tests.
MethodsSystematic review and meta-analysis. The index test was OCT. The comparator tests were visual acuity, clinical evaluation (slit lamp), Amsler chart, color fundus photographs, infrared reflectance, red-free images and blue reflectance, fundus autofluorescence imaging, indocyanine green angiography (ICGA), preferential hyperacuity perimetry, and microperimetry. We searched the following databases: MEDLINE, MEDLINE In-Process, EMBASE, Biosis, Science Citation Index, the Cochrane Library, Database of Abstracts of Reviews of Effects, MEDION, and the Health Technology Assessment database. The last literature search was conducted in March 2013. We used the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) to assess risk of bias.
ResultsWe included 8 studies involving more than 400 participants. Seven reported the performance of OCT (3 time-domain [TD] OCT, 3 spectral-domain [SD] OCT, 1 both types) and 1 reported the performance of ICGA in the detection of nAMD activity. We did not find studies directly comparing tests in the same population. The pooled sensitivity and specificity of TD OCT and SD OCT for detecting active nAMD was 85% (95% confidence interval [CI], 72%–93%) and 48% (95% CI, 30%–67%), respectively. One study reported ICGA with sensitivity of 75.9% and specificity of 88.0% for the detection of active nAMD. Half of the studies were considered to have a high risk of bias.
ConclusionsThere is substantial disagreement between OCT and FFA findings in detecting active disease in patients with nAMD who are being monitored. Both methods may be needed to monitor patients comprehensively with nAMD.
Resumo:
BACKGROUND: Age-related macular degeneration is the most common cause of sight impairment in the UK. In neovascular age-related macular degeneration (nAMD), vision worsens rapidly (over weeks) due to abnormal blood vessels developing that leak fluid and blood at the macula.
OBJECTIVES: To determine the optimal role of optical coherence tomography (OCT) in diagnosing people newly presenting with suspected nAMD and monitoring those previously diagnosed with the disease.
DATA SOURCES: Databases searched: MEDLINE (1946 to March 2013), MEDLINE In-Process & Other Non-Indexed Citations (March 2013), EMBASE (1988 to March 2013), Biosciences Information Service (1995 to March 2013), Science Citation Index (1995 to March 2013), The Cochrane Library (Issue 2 2013), Database of Abstracts of Reviews of Effects (inception to March 2013), Medion (inception to March 2013), Health Technology Assessment database (inception to March 2013).
REVIEW METHODS: Types of studies: direct/indirect studies reporting diagnostic outcomes.
INDEX TEST: time domain optical coherence tomography (TD-OCT) or spectral domain optical coherence tomography (SD-OCT).
COMPARATORS: clinical evaluation, visual acuity, Amsler grid, colour fundus photographs, infrared reflectance, red-free images/blue reflectance, fundus autofluorescence imaging, indocyanine green angiography, preferential hyperacuity perimetry, microperimetry. Reference standard: fundus fluorescein angiography (FFA). Risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic curves. A Markov model was developed (65-year-old cohort, nAMD prevalence 70%), with nine strategies for diagnosis and/or monitoring, and cost-utility analysis conducted. NHS and Personal Social Services perspective was adopted. Costs (2011/12 prices) and quality-adjusted life-years (QALYs) were discounted (3.5%). Deterministic and probabilistic sensitivity analyses were performed.
RESULTS: In pooled estimates of diagnostic studies (all TD-OCT), sensitivity and specificity [95% confidence interval (CI)] was 88% (46% to 98%) and 78% (64% to 88%) respectively. For monitoring, the pooled sensitivity and specificity (95% CI) was 85% (72% to 93%) and 48% (30% to 67%) respectively. The FFA for diagnosis and nurse-technician-led monitoring strategy had the lowest cost (£39,769; QALYs 10.473) and dominated all others except FFA for diagnosis and ophthalmologist-led monitoring (£44,649; QALYs 10.575; incremental cost-effectiveness ratio £47,768). The least costly strategy had a 46.4% probability of being cost-effective at £30,000 willingness-to-pay threshold.
LIMITATIONS: Very few studies provided sufficient information for inclusion in meta-analyses. Only a few studies reported other tests; for some tests no studies were identified. The modelling was hampered by a lack of data on the diagnostic accuracy of strategies involving several tests.
CONCLUSIONS: Based on a small body of evidence of variable quality, OCT had high sensitivity and moderate specificity for diagnosis, and relatively high sensitivity but low specificity for monitoring. Strategies involving OCT alone for diagnosis and/or monitoring were unlikely to be cost-effective. Further research is required on (i) the performance of SD-OCT compared with FFA, especially for monitoring but also for diagnosis; (ii) the performance of strategies involving combinations/sequences of tests, for diagnosis and monitoring; (iii) the likelihood of active and inactive nAMD becoming inactive or active respectively; and (iv) assessment of treatment-associated utility weights (e.g. decrements), through a preference-based study.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42012001930.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
Resumo:
Purpose:To determine the optimal role of OCT in diagnosing and monitoring nAMD (detecting disease activity and the need for further anti-VEGF treatment).
Methods:Systematic review. Major electronic databases and websites were searched. Studies were included if they reported the diagnostic performance of time domain or spectral domain OCT (or selected other tests) against a reference standard of ophthalmologist-interpreted fluorescein angiography in people with newly suspected or previously diagnosed nAMD. Risk of bias was assessed by two independent investigators using QUADAS-2. Summary receiver operating characteristic (SROC) curves were produced for each test given sufficient data.
Results:3700 titles/abstracts were screened, and 120 (3.2%) were selected for full-text assessment. A total of 22 studies were included (17 on diagnosis, 7 monitoring, and 3 both). From 15 studies reporting OCT data, sensitivity and specificity ranged from 59% to 100% and 27% to 100%, respectively.
Conclusions:The reported diagnostic performance of OCT showed large variability. The methodological quality of most studies was sub-optimal.
Resumo:
BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.
METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.
CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
Resumo:
Purpose: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy.
Methods: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Muller (Moorfields/Institute of Ophthalmology-Muller 1 [ MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct N epsilon-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Muller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Muller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF alpha) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide.
Results: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Muller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Muller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Muller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-alpha. Incubation of Muller glia with FDP-lysine-HSA also caused apoptosis at high concentrations.
Conclusions: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Muller glial abnormalities occurring in the early stages of diabetic retinopathy.
Resumo:
Tese de mestrado, Química Farmacêutica e Terapêutica, Universidade de Lisboa, Faculdade de Farmácia, 2013
Resumo:
The present work describes the optimization of a short-term assay, based on the inhibition of the esterase activity of the alga Pseudokirchneriella subcapitata, in a microplate format. The optimization of the staining procedure showed that the incubation of the algal cells with 20 μmolL−1 fluorescein diacetate (FDA) for 40 min allowed discrimination between metabolic active and inactive cells. The shortterm assay was tested using Cu as toxicant. For this purpose, algal cells, in the exponential or stationary phase of growth, were exposed to the heavy metal in growing conditions. After 3 or 6 h, cells were subsequently stained with FDA, using the optimized procedure. For Cu, the 3- and 6-h EC50 values, based on the inhibition of the esterase activity of algal cells in the exponential phase of growth, were 209 and 130 μg L−1, respectively. P. subcapitata cells, in the stationary phase of growth, displayed higher effective concentration values than those observed in the exponential phase. The 3- and 6-h EC50 values for Cu, for cells in the stationary phase, were 443 and 268 μgL−1, respectively. This short-term microplate assay showed to be a rapid endpoint for testing toxicity using the alga P. subcapitata. The small volume required, the simplicity of the assay (no washing steps), and the automatic reading of the fluorescence make the assay particularly well suited for the evaluation of the toxicity of a high number of environmental samples.
Resumo:
This work explores the use of fluorescent probes to evaluate the responses of the green alga Pseudokirchneriella subcapitata to the action of three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II) for a short time (6 h). The toxic effect of the metals on algal cells was monitored using the fluorochromes SYTOX Green (SG, membrane integrity), fluorescein diacetate (FDA, esterase activity) and rhodamine 123 (Rh123, mitochondrial membrane potential). The impact of metals on chlorophyll a (Chl a) autofluorescence was also evaluated. Esterase activity was the most sensitive parameter. At the concentrations studied, all metals induced the loss of esterase activity. SG could be used to effectively detect the loss of membrane integrity in algal cells exposed to 0.32 or 1.3 μmol L−1 Cu(II). Rh123 revealed a decrease in the mitochondrial membrane potential of algal cells exposed to 0.32 and 1.3 μmol L−1 Cu(II), indicating that mitochondrial activity was compromised. Chl a autofluorescence was also affected by the presence of Cr(VI) and Cu(II), suggesting perturbation of photosynthesis. In conclusion, the fluorescence-based approach was useful for detecting the disturbance of specific cellular characteristics. Fluorescent probes are a useful diagnostic tool for the assessment of the impact of toxicants on specific targets of P. subcapitata algal cells.
Resumo:
PURPOSE: Retinal pigment epithelium (RPE) tear is an extremely rare complication in patients with classic neovascular membranes without RPE detachment. We evaluate their incidence and functional outcome following treatment with intravitreal ranibizumab. METHODS: Observational study of 72 consecutive patients (74 eyes) treated at Jules Gonin University Eye Hospital, Lausanne, with intravitreal ranibizumab 0.5 mg for classic choroidal neovascularization (CNV) between March 2006 and February 2008. Best-corrected visual acuity (BCVA), fundus examination and optical coherence tomography were recorded monthly; fluorescein angiography was performed at baseline and repeated at least every 3 months. RESULTS: RPE tears occurred in four (5.4%) eyes temporal to the fovea, after a mean of four injections (range 3-6). Mean baseline BCVA was 0.25 decimal equivalent (logMAR 0.67) and improved despite the RPE tear to 0.6 decimal equivalent (logMAR 0.22). CONCLUSION: RPE tears following intravitreal ranibizumab injections for classic CNV can occur in about 5% of patients, even in the absence of baseline RPE detachment. Nevertheless, vision may improve provided the fovea is not involved.
Resumo:
Abstract Part I : Background : Isolated lung perfusion (ILP) was designed for the treatment of loco-regional malignancies of the lung. In contrast to intravenous (IV) drug application, ILP allows for a selective administration of cytostatic agents such as doxorubicin to the lung while sparing non-affected tissues. However, the clinical results with ILP were disappointing. Doxorubicinbased ILP on sarcoma rodent lungs suggested high overall doxorubicin concentrations within the perfused lung but a poor penetration of the cytostatic agent into tumors. The same holds true for liposomal-encapsulated macromolecular doxorubicin (LiporubicinTM) In specific conditions, low-dose photodynamic therapy (PDT) can enhance the distribution of macromolecules across the endothelial bamer in solid tumors. It was recently postulated that tumor neovessels were more responsive to PDT than the normal vasculature. We therefore hypothesized that Visudyne®-mediated PDT could selectively increase liposomal doxorubicin (LiporubicinTM) uptake in sarcoma tumors to rodent lungs during intravenous (IV) drug administration and isolated lung perfusion (ILP). Material and Methods : A sarcoma tumor was generated in the left lung of Fisher rats by subpleural injection of a sarcoma cell ,suspension via thoracotomy. Ten days later, LiporubicinTM is administered IV or by single pass antegrade ILP, with or without Visudyne® -mediated low-dose PDT pre-treatment of the sarcoma bearing lung. The drug concentration and distribution were assessed separately in tumors and lung tissues by high pressure liquid chromatography (HPLC) and fluorescence microscopy (FNI~, respectively. Results : PDT pretreatment before IV LiporubicinTM administration resulted in a significantly higher tumor drug uptake and tumor to lung drug ratio compared to IV drug injection alone without affecting the blood flow and drug distribution in the lung. PDT pre-treatment before LiporubicinTM-based ILP also resulted in a higher tumor drug uptake and a higher tumor to lung drug ratio compared to ILP alone, however, these differences were not significant due to a heterogeneous blood flow drug distribution during ILP which was further accentuated by PDT. Conclusions : Low-dose Visudyne®-mediated PDT pre-treatment has the potential to selectively enhance liposomal encapsulated doxorubicin uptake in tumors but not in normal lung tissue after IV drug application in a rat model of sarcoma tumors to the lung which opens new perspectives for the treatment of superficially spreading chemoresistant tumors of the chest cavity such as mesothelioma or malignant effusion. However, the impact of PDT on macromolecular drug uptake during ILP is limited since its therapeutic advantage is circumvented by ILP-induced heterogeneicity of blood flow and drug distribution Abstract Part II Background : Photodynamic therapy (PDT) with Visudyne® acts by direct cellular phototoxicity and/or by an indirect vascular-mediated effect. Here, we demonstrate that the vessel integrity interruption by PDT can promote the extravasation of a macromolecular agent in normal tissue. To obtain extravasation in normal tissue PDT conditions were one order of magnitude more intensive than the ones in tissue containing neovessels reported in the literature. Material and Methods : Fluorescein isothiocyanate dextran (FITC-D, 2000kDa), a macromolecular agent, was intravenously injected 10 minutes before (LKO group, n=14) or 2 hours (LK2 group, n=16) after Visudyne® mediated PDT in nude mice bearing a dorsal skin fold chamber. Control animals had no PDT (CTRL group, n=8). The extravasation of FITC-D from blood vessels in striated muscle tissue was observed in both groups in real-time for up to 2500 seconds after injection. We also monitored PDT-induced leukocyte rolling in-vivo and assessed, by histology, the corresponding inflammatory reaction score in the dorsal skin fold chambers. Results : In all animals, at the applied PDT conditions, FITC-D extravasation was significantly enhanced in the PDT treated areas as compared to the surrounding non-treated areas (p<0.0001). There was no FITC-D leakage in the control animals. Animals from the LKO group had significantly less FITC-D extravasation than those from the LK2 group (p = 0.0002). In the LKO group FITC-D leakage correlated significantly with the inflammation (p < 0.001). Conclusions: At the selected conditions, Visudyne-mediated PDT promotes vascular leakage and FITC-D extravasation into the interstitial space of normal tissue. The intensity of vascular leakage depends on the time interval between PDT and FITC-D injection. This concept could be used to locally modulate the delivery of macromolecules in vivo. Résumé : La perfusion cytostatique isolée du poumon permet une administration sélective des agents cytostatiques sans implication de la circulation systémique avec une forte accumulation au niveau du poumon mais une faible pénétration dans les tumeurs. La thérapie photodynamique (PDT) qui consiste en l'application d'un sensibilisateur activé par lumière laser non- thermique d'une longueur d'onde définie permet dans certaines conditions, une augmentation de la pénétration des agents cytostatiques macromoléculaires à travers la barrière endothéliale tumorale. Nous avons exploré cet avantage thérapeutique de la PDT dans un modèle expérimental afin d'augmenter d'une manière sélective la pénétration tumorale de la doxorubicin pegylée, liposomal- encapsulée macromoléculaire (Liporubicin). Une tumeur sarcomateuse a été générée au niveau du poumon de rongeur suivie d'administration de Liporubicin, soit par voie intraveineuse soit par perfusion isolée du poumon (ILP). Une partie des animaux ont reçus un prétraitement de la tumeur et du poumon sous jacent par PDT avec Visudyne comme photosensibilisateur. Les résultats ont démontrés que la PDT permet, sous certaines conditions, une augmentation sélective de Liporubicin dans les tumeurs mais pas dans le parenchyme pulmonaire sous jacent. Après administration intraveineuse de Liporubicin et prétraitement par PDT, l'accumulation dans les tumeurs était significative par rapport au poumon, et aux tumeurs sans PDT. Le même phénomène est observé après ILP du poumon. Cependant, les différences avec ou sans PDT n'étaient pas significatives lié à und distribution hétérogène de Liporubicin dans le poumon perfusé après ILP. Dans une deuxième partie de l'expérimentation, nous avons exploré la microscopie intra-vitale pour déterminer l'extravasion des substances macromoléculaires (FITS) à travers la barrière endothéliale avec ou sans Visudyne-PDT au niveau des chambres dorsales des souris nues. Les résultats montrent qu'après PDT, l'extravasion de FITS a été augmentée de manière significative par rapport au tissu non traité. L'intensité de l'extravasion de FITS dépendait également de l'intervalle entre PDT et injection de FITS. En conclusion, les expérimentations montrent que la PDT est capable, sous certaines conditions, d'augmenter de manière significative l'extravasion des macromolécules à travers la barrière endothéliale et leur accumulation dans des tumeurs mais pas dans le parenchyme pulmonaire. Ces résultats permettent une nouvelle perspective de traitement pour des tumeurs superficielles intrathoraciques chimio-résistent comme l'épanchement pleural malin ou le mésothéliome pleural.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.