917 resultados para external cavity semiconductor laser interferometer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the use of a polarization based interferometer with variable transfer function for the generation of temporally flat top pulses from gain switched single mode semiconductor lasers. The main advantage of the presented technique is its flexibility in terms of input pulse characteristics, as pulse duration, spectral bandwidth and operating wavelength. Theoretical predictions and experimental demonstrations are presented and the proposed technique is applied to two different semiconductor laser sources emitting in the 1550 nm region. Flat top pulses are successfully obtained with input seed pulses with duration ranging from 40 ps to 100 ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well laser diode has been demonstrated for the first time. An external cavity comprising Littrow geometry was implemented for spectral control of pulsed operation. The feedback was optimized by adjusting the external cavity length and the driving frequency of the laser. The generated pulses had a peak power in excess of 400mW, a pulse duration of 60ps, a spectral linewidth of 0.14nm and maximum side band suppression ratio of 20dB. It was tunable within the range of 3.6nm centered at a wavelength of 403nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, vertical-external-cavity surface-emitting lasers (VECSELs) have become promising sources of ultrashort laser pulses. While the mode-locked operation has been strongly relying on costly semiconductor saturable-Absorber mirrors for many years, new techniques have been found for pulse formation. Mode-locking VECSELs are nowadays not only achievable by using a variety of saturable absorbers, but also by using a saturable-Absorber-free technique referred to as self-mode-locking (SML), which is to be highlighted here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell: Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets, Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscate pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported. It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of similar to 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of similar to 75%. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence experiments have identified strain as the origin for polarization pinning in vertical cavity surface emitting lasers post-processed by focused ion beam etching. Theoretical models were applied to deduce the strain in devices. Post-annealing was used to optimize polarization pinning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Etched VCSEL sources are reported which avoid bandwidth collapse in multimode fibre using a simple coupling technique to control the launch. These devices have allowed better than over-filled launch bandwidth for alignment tolerances of ±7 microns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of ultrashort optical pulses by semiconductor lasers has been extensively studied for many years. A number of methods, including gain-/Q-switching and different types of mode locking, have been exploited for the generation of picosecond and sub-picosecond pulses [1]. However, the shortest pulses produced by diode lasers are still much longer and weaker than those that are generated by advanced mode-locked solid-state laser systems [2]. On the other hand, an interesting class of devices based on superradiant emission from multiple contact diode laser structures has also been recently reported [3]. Superradiance (SR) is a transient quantum optics phenomenon based on the cooperative radiative recombination of a large number of oscillators, including atoms, molecules, e-h pairs, etc. SR in semiconductors can be used for the study of fundamental properties of e-h ensembles such as photon-mediated pairing, non-equilibrium e-h condensation, BSC-like coherent states and related phenomena. Due to the intrinsic parameters of semiconductor media, SR emission typically results in the generation of a high-power optical pulse or pulse train, where the pulse duration can be much less than 1 ps, under optimised bias conditions. Advantages of this technique over mode locking in semiconductor laser structures include potentially shorter pulsewidths and much larger peak powers. Moreover, the pulse repetition rate of mode-locked pulses is fixed by the cavity round trip time, whereas the repetition rate of SR pulses is controlled by the current bias and can be varied over a wide range. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically pumped ultrafast vertical external cavity surface emitting lasers (VECSELs), also referred to as semiconductor disk lasers (SDLs), are very attractive sources for ps- and fs-pulses in the near infrared [1]. So far VECSELs have been passively modelocked with semiconductor saturable absorber mirrors (SESAMs, [2]). Graphene has emerged as a promising saturable absorber (SA) for a variety of applications [3-5], since it offers an almost unlimited bandwidth and a fast recovery time [3-5]. A number of different laser types and gain materials have been modelocked with graphene SAs [3-4], including fiber [5] and solid-state bulk lasers [6-7]. Ultrafast VECSELs are based on a high-Q cavity, which requires very low-loss SAs compared to other lasers (e.g., fiber lasers). Here we develop a single-layer graphene saturable absorber mirror (GSAM) and use it to passively modelock a VECSEL. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature characteristics. In order to improve the quality of direct-modulation by means of the stochastic resonance (SR) mechanism in QW semiconductor lasers, we investigate the behaviour of the SR in direct-modulated QW semiconductor laser systems. Considering the cross-correlated carrier noise and photon noise, we calculate the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated laser system by using the linear approximation method. The results indicate that the SR always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.