954 resultados para enzymatic hydrolysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently there is a great quest of producing alcohol from starchy resources, replacing the sugar cane. The most common starchy sources are cassava, maize and sweet potatoes and a lot of research are been realized with excellent results. In this work it was evaluated the influence of the concentration of dry matter on the enzymatic hydrolysis process of starch from sweet potato for ethanol production. Through the sweet potato was produced a flour using a low-cost method and easy operation equipments. The sweet potato flour was characterized physical and chemically and from these results was prepared the treatments for enzymatic hydrolysis. The experimental design considered as independent variable the dry matter concentration of the sweet potato flour in 3 levels; 10, 15 and 20% in the formulation of suspensions. The other variables were keeping constant being: temperature in the 1° hydrolysis step of 90°C and time of 2 hours; temperature in the 2° saccharification step of 60°C and time of 17 hours. The hydrolysates obtained at the three assays were transferred to six liter enlerynmeyer and inoculated with a biologic catalyst, Saccharomyces, dehydrated yeasts of Saccharomyces cerevisiae CAT 1, at a rate of 5% in weight. The flasks were placed in a shaker type orbital with controlled temperature of 30°C during a time of 15 hours. The initial reducer sugars concentration and respective ethanol concentrations in wine were: 11.2% glucose and 2.16% ethanol in the suspension with 10% of dry matter; 13.5% glucose and 4.39% ethanol with 15% and 17.5% glucose and 6.03% ethanol in suspension with 20% of dry matter. ix The results showed that the higher percentage of dry matter carried out to higher sugar yield in hydrolyzed. It was possible observed that products quality improved with a higher concentration of dry matter

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New patterns from replaceable sources have been searched by scientific community to ethanol produce. The seed of avocado has thereabout 20% of starch. The starch hydrolysis results fermentable sugars by Saccharomyces cerevisiae, and the ethanol is the major product of fermentation. The starch can be hydrolysed by acids, basis and enzymes. Previous studies showed that enzymatic hydrolysis can produce 26,01 liter of ethanol per ton of seed. At the present work, we analyzed the chemistry hydrolysis efficiency before the enzymatic hydrolysis and the use of dormant seed consequence. The Brix rate variation at each stage was evaluated and the ethanol concentration was determined with gas chromatograph technique. The chemistry hydrolysis with subsequent enzymatic hydrolysis was effective, producing until 61,8 L.ton-1. The use of dormant seeds wasn’t significative to raise the Brix rate. The seed of avocado demonstrated to be an alternative replaceable source to ethanol produce

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen is known as a clean energy resource. The biological production of hydrogen has been attracting attention as an environmentally friendly processs that does not consume fossil fuels. Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. Cellulose is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires the presence of cellulase. The present study aimed to investigate the efficiency of acid pretreatment on ruminal fluid in order to enrich H2 producing bacteria consortia to enhance biohydrogen rate and substrate removal efficiency. In this study, fermentative hydrogen producers were enriched on cellulose (2g/L) in a modificated Del Nery medium (DNM) at 37ºC and initial pH 7.0 using rumen fluid (10% v/v) as inoculum. To increase the hydrogen production it was added cellulose (10mL) to the medium. The gas products (mainly H2 and CO2) was analyzed by gas chromatography (Shimadzu GC 2010) using a thermal conductivity detector. The volatile fatty acids and ethanol were also detected by GC using a flame ionization detector. Cellulose degradation was quantified by using the phenolsulfuric acid method. Analysis showed that the biogas produced from the anaerobic fermentation contained only hydrogen and carbon dioxide, without detectable methane after acid pretreatment test. On DNM the hydrogen production started with 4 h (5,3 x 105 mmol H2/L) of incubation, and the maximum H2 concentration was observed with 34 h (7,1 x 106 mmol H2/L) of incubation. During the process, it was observed a predominance of acetic acid and butyric acid as well as a low production of acetone, ethanol and nbutanol in all experimental phases. Butyrate accounted for more than 77% of total. As a result of the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system was reduced to 4,0. On microscopy analyses there were observed rods with endospores. The batch anaerobic fermentation assays performed on anaerobic mixed inoculum from rumen fluid demonstrated the feasibility of H2 generation utilizing cellulose as substrate. Based on the results, it can be concluded that the acid treatment was efficient to inhibit the methanogenic archaea cells present in rumen fluid. The rumen fluid cells present a potential route in converting renewable biomass such as cellulose into hydrogen energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast (R). The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment.Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial beta-glucosidase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vinegar is a food of condiments group that have great use in the food industry. This study aimed to evaluate the effects of parameters of the acetic fermentation process in the production of ginger vinegar. A suspension of ginger rhizomes with 12% of starch was subjected to enzymatic hydrolysis process to obtain hydrolyzed with 85.6% of glucose. After the alcoholic fermentation the wine was obtained with 40.3% ethanol. The acetic fermentation process of ginger alcoholic solution followed a completely randomized design in a factorial for three factors at two levels. The independent variables were: temperature, nutrients and proportion of "strong vinegar" and alcoholic solution (initial acidity). Results showed variation from 2.74 to 3.70% for dry extract and 2.13 to 2.83% for ash in vinegars. The profile of organic acids of ginger vinegars showed the presence of acetic, citric, malic and succinic acids in all treatments. The condition of 20 degrees C, initial acidity 1:1, with addition of nutrients allow obtaining good quality vinegars and higher GK yields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)