993 resultados para electric variables measurement
Resumo:
Optimised placement of control and protective devices in distribution networks allows for a better operation and improvement of the reliability indices of the system. Control devices (used to reconfigure the feeders) are placed in distribution networks to obtain an optimal operation strategy to facilitate power supply restoration in the case of a contingency. Protective devices (used to isolate faults) are placed in distribution systems to improve the reliability and continuity of the power supply, significantly reducing the impacts that a fault can have in terms of customer outages, and the time needed for fault location and system restoration. This paper presents a novel technique to optimally place both control and protective devices in the same optimisation process on radial distribution feeders. The problem is modelled through mixed integer non-linear programming (MINLP) with real and binary variables. The reactive tabu search algorithm (RTS) is proposed to solve this problem. Results and optimised strategies for placing control and protective devices considering a practical feeder are presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An overview is given on the possibility of controlling the status of circuit breakers (CB) in a substations with the use of a knowledge base that relates some of the operation magnitudes, mixing status variables with time variables and fuzzy sets. It is shown that even when all the magnitudes to be controlled cannot be included in the analysis, it is possible to control the desired status while supervising some important magnitudes as the voltage, power factor, and harmonic distortion, as well as the present status.
Resumo:
Pion virtual compton scattering (VCS) via the reaction π-e→π-eγ was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c π- beam incident on target atomic electrons, detecting the incident π- and the final state π-, electron and γ. Theoretical predictions based on chiral perturbation theory are incorporated into a Monte Carlo simulation of the experiment and are compared to the data. The number of reconstructed events (=9) and their distribution with respect to the kinematic variables (for the kinematic region studied) are in reasonable accord with the predictions. The corresponding π- VCS experimental cross section is σ=38.8±13 nb, in agreement with the theoretical expectation of σ=34.7 nb.
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.
Resumo:
Coqueiral lake is a marginal lake located at the southeast São Paulo State, in the mouth zone of the Paranapanema river into Jurumirim Reservoir and it has high connectivity with the Paranapaneina river. This work aimed to verify the benthic biodiversity in areas of the lake bottom. 18 sampling sites in the lake were selected, including shallow and deep areas. The samples were taken every three months during one year. Physical and chemical water variables (level, transparency, dissolved oxygen, pH, and electric conductivity) were analyzed. Sediment samples were picked up in triplicate for fauna and abiotic factors analysis (granulometric composition and sediment organic content), using Petersen dredge. The material was sorted out and analyzed under stereoscopic microscope. Counting and identification of the organisms were accomplished and diversity, relative abundance, taxonomic richness and dominance index were calculated. The analysis revealed a fauna with low species diversity and, with Chironomidae and Ephemeroptera dominance. Ephemeroptera, Campsurus, dominated in the hottest period and with low lake depth. Organisms' distribution had as main factors depth, transparency, pH, and water temperature. In the comparison between shallow and deep areas, a small density of organism in the deep regions was observed.
Resumo:
Since Ranzini suggested supplementing the SPT test with measurement of the torque required to turn the split spoon sampler after driving, many Brazilian engineers have been using this in the design of pile foundations. This paper presents a study of the rod length influence in the torque measurement. A theoretical study of material resistance considering torsion and bending in a thin wall tubular steel shaft was performed. It makes possible to conclude that the shearing tension caused by the proper weight represents less than 1% of the shearing tension caused by the turning moment. In addition, an experimental study was done with electric torquemeters fixed in a horizontal rod system. The tests were being carried out to analyze rods of one meter to twenty meters in length and the measurements were collected at the ends of each rod length verifying the efficiency data. As a result, it is possible to verify that the torque difference through rod length is lower than minimum scales of mechanical torquemeters that are used on practical engineering. Also a fact to be considered is a big torque loss for values under 20 N.m of applied torque. This way, the SPT-T is not adequate to low consistency soil. Copyright ASCE 2007.
Resumo:
The measurement of the phase shift φ between the transmited and difracted beams interfering along the same direction behind the hologram recorded in a photorefractive crystal is directly and accurately measured using a self-stabilized recording technique. The measured phase shift as a function of the applied electric field allows computing the Debye screening lenght and the effectively applied field coefficient of an undoped Bi 12TiO 20 crystal. The result is in good agreement with the already available information about this sample. © 2008 American Institute of Physics.
Resumo:
The class of piezoelectric actuators considered in this paper consists of a multi-flexible structure actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and in different directions. The devices were modeled by finite element using the software ANSYS and the topology optimization method. The following XY actuators were build to achieve maximum displacement in the X and Y directions with a minimum crosstalk between them. The actuator prototypes are composed of an aluminum structure, manufactured by using a wire Electrical Discharge Machining, which are bonded to rectangular PZT5A piezoceramic blocks by using epoxy resin. Multi-actuator piezoelectric device displacements can be measured by using optical interferometry, since it allows dynamic measurements in the kHz range, which is of the order of the first resonance frequency of these piezomechanisms. A Michelson-type interferometer, with a He-Ne laser source, is used to measure the displacement amplitudes in nanometric range. A new optical phase demodulation technique is applied, based on the properties of the triangular waveform drive voltage applied to the XY piezoelectric nanopositioner. This is a low-phase-modulation-depth-like technique that allows the rapid interferometer auto-calibration. The measurements were performed at 100 Hz frequency, and revealed that the device is linear voltage range utilized in this work. The ratio between the generated and coupled output displacements and the drive voltages is equal to 10.97 nm/V and 1.76 nm/V, respectively, which corresponds to a 16% coupling rate. © 2010 IEEE.
Resumo:
This work aims to demonstrate an application of telemetry for monitoring process variables. The authors developed the prototype of a dedicated device capable of multiplexing, encoding and transmitting real-time data signals via amplitude-shift keying modulation to remotely located device(s). The prototype development is described in details, enabling the reproduction of the proposed telemetry system for a three-phase motor as well as for other devices. Furthermore, the proposed device has an easy implementation by using of accessible components and low cost, also presenting a tutorial and educational purpose. © 2011 IEEE.
Specialist tool for monitoring the measurement degradation process of induction active energy meters
Resumo:
This paper presents a methodology and a specialist tool for failure probability analysis of induction type watt-hour meters, considering the main variables related to their measurement degradation processes. The database of the metering park of a distribution company, named Elektro Electricity and Services Co., was used for determining the most relevant variables and to feed the data in the software. The modeling developed to calculate the watt-hour meters probability of failure was implemented in a tool through a user friendly platform, written in Delphi language. Among the main features of this tool are: analysis of probability of failure by risk range; geographical localization of the meters in the metering park, and automatic sampling of induction type watt-hour meters, based on a risk classification expert system, in order to obtain information to aid the management of these meters. The main goals of the specialist tool are following and managing the measurement degradation, maintenance and replacement processes for induction watt-hour meters. © 2011 IEEE.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
The aim of this work was to generate mathematical models capable of identifying photosynthetic pigments and soluble proteins from the leaves of Jatropha curcas using the relationship between classical readings performed by spectrophotometry and the chlorophyll meter, ClorofiLOG ® 1030. The work was conducted at Embrapa Cotton, in the city of Campina Grande, state of Paraíba, Brazil. For indirect analysis, portable equipment was used to read leaf discs at different stages of development. The chlorophyll in these discs was then determined using a classical method, while the Bradford method was used to determine soluble proteins. The data were subjected to analysis of variance and regression analyses, in which the readings obtained using the portable chlorophyll meter were the dependent variables and the photosynthetic pigments and soluble protein determined by the classical method the independents variables. The results indicated that with the exception of chlorophyll b and soluble protein, the mathematical models obtained with the portable chlorophyll ClorofiLOG ® 1030 can be used to estimate the concentration of photosynthetic pigments with high precision, thus saving time and the chemical reagents required for conventional procedures.