988 resultados para disk diffusion method
Resumo:
A fluconazole 25 microg disk diffusion test was used to test 2230 consecutively isolated Candida strains from 42 different hospital laboratories in 23 countries. Ninety seven percent of 1634 Candida albicans isolates and 83.4% of 596 non-Candida albicans isolates were susceptible to fluconazole, applying the proposed breakpoints (> or = 26 mm for susceptible strains and 18-25 mm for dose-dependent susceptible strains). This is the first hospital laboratory study to evaluate a large number and wide range of sequential Candida isolates from patients with all types of hospital infections. The fluconazole disk diffusion test appears to be a low-cost, reproducible, and accurate means of assessing the in vitro susceptibility of Candida isolates.
Resumo:
Monalysin was recently described as a novel pore-forming toxin (PFT) secreted by the Drosophila pathogen Pseudomonas entomophila. Recombinant monalysin is multimeric in solution, whereas PFTs are supposed to be monomeric until target membrane association. Monalysin crystals were obtained by the hanging-drop vapour-diffusion method using PEG 8000 as precipitant. Preliminary X-ray diffraction analysis revealed that monalysin crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 162.4, b = 146.2, c = 144.4 Å, β = 122.8°, and diffracted to 2.85 Å resolution using synchrotron radiation. Patterson self-rotation analysis and Matthews coefficient calculation indicate that the asymmetric unit contains nine copies of monalysin. Heavy-atom derivative data were collected and a Ta6Br14 cluster derivative data set confirmed the presence of ninefold noncrystallographic symmetry.
Resumo:
Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistant Aspergillus spp. and multidrug-resistant non-Aspergillus molds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154 Aspergillus and 136 non-Aspergillus isolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable for Mucoromycotina but Etest MIC values were consistently lower for Aspergillus spp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillus molds (Mucoromycotina and Fusarium spp.). Additional study of molecularly characterized triazole-resistant Aspergillus isolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance among Aspergillus spp.
Resumo:
In the present study, new N-aryl and N-alkylarylcyclic imides were synthesized and their antibacterial properties against Escherichia coli and Staphylococcus aureus were evaluated by using the diffusion method. All compounds were obtained in good yield (54 - 95%) and characterized by spectral data (¹H-NMR, MS, IR) and elemental analysis (CHN). The biological results indicated that some compounds exert significative antibacterial effects, confirming previous studies on biological activities of cyclic imides.
Resumo:
Since the introduction of antibiotic agents, the amount and prevalence of Beta-lactam resistant enterobacteria has become an increasing problem. Many enterobacteria are opportunistic pathogens that easily acquire resistance mechanisms and genes, which make the situation menacing. These bacteria have acquired resistance and can hydrolyse extended spectrum cephalosporins and penicillins by producing enzymes called extended-spectrum Beta-lactamases (ESBLs). ESBL-producing bacteria are most commonly found in the gastro-intestinal tract of colonised patients. These resistant strains can be found in both health-care associated and community-acquired isolates. The detection and treatment of infections caused by bacteria producing ESBLs are problematic. This study investigated the genetic basis of extended-spectrum Beta-lactamases in Enterobacteriaceae, especially in Escherichia coli and Klebsiella pneumoniae isolates. A total of 994 Finnish Enterobacteriaceae strains, collected at 26 hospital laboratories, during 2000 and 2007 were analysed. For the genetic basis studies, PCR, sequencing and pyrosequencing methods were optimised. In addition, international standard methods, the agar dilution and disk diffusion methods were performed for the resistance studies, and the susceptibility of these strains was tested for antimicrobial agents that are used for treating patients. The genetic analysis showed that blaCTX-M was the most prevalent gene among the E. coli isolates, while blaSHV-12 was the most common Beta-lactamase gene in K. pneumoniae. The susceptibility testing results showed that about 60% of the strains were multidrug resistant. The prevalence of ESBL-producing isolates in Finland has been increasing since 2000. However, the situation in Finland is still much better than in many other European countries.
Resumo:
In this work, the effectiveness of four screening techniques (three techniques of the diffusion method and one microdilution broth method) were compared. Evaluated were the ethanolic and dichloromethanic extracts of Miconia rubiginosa (Melastomataceae) against six standard bacteria (ATCC). The results showed statistical disagreement among the three diffusion techniques. Among the diffusion techniques, the well technique displayed the best result. However the microdilution broth method demonstrated to be the most adequate method to evaluate the antibacterial activity of plant crude extracts and pure compounds when compared to the other methodologies.
Resumo:
Three phloroglucinols were obtained from Hypericum brasiliense: japonicine A (1), isouliginosin B (2) and uliginosin B (3). Bioautography and disk diffusion methods were used to determine antibacterial activity of the hexanic extract. Strains of the Coagulase Negative Staphylococcus and American Methicillin Resistant Staphylococcus aureus clones showed a growth inhibition zone ranging from 10 to 12 mm and 7 to 15 mm, respectively. Minimal inhibitory concentration (MIC) values were used to measure antistaphylococcal activity for all phloroglucinols. Isouliginosin B and uliginosin B presented MIC values of 1.5 and 3.0 µg/mL, respectively, while japonicine A displayed MIC value of 50.0 µg/mL.
Resumo:
Solid lipid nanoparticles (SLN), nanoemulsions (NE), and microemulsions (ME) were prepared by the hot solvent diffusion method, using tristearin or castor oil as oily phase, and soy lecithin and Solutol HS 15 as surfactants. Mean particle sizes ranged from 20 to 215 nm and negative zeta potentials were obtained for all nanocarriers. A HPLC method used to determine resveratrol was specific, linear, exact and precise. The entrapment efficiency was high for all formulations. However, resveratrol content was significantly varied among the lipid nanocarriers. Lipid nanocarrier containing hydrogels exhibiting pseudoplastic behavior were obtained after incorporation of hydroxyethylcellulose in the colloidal dispersions.
Resumo:
Sulfonic acid functionalized SBA-15 nanoporous material (SBA-Pr-SO3H) with a large pore size of 6 nm, a high surface area, high selectivity, and excellent chemical and thermal stability was applied as an efficient heterogeneous nanoporous acid catalyst in the reaction of isatin with pyrazolones under mild reaction conditions. A novel class of symmetrical spiro[indoline-3,4'-pyrano[2,3-c:6,5-c']dipyrazol]-2-one derivatives was successfully obtained in high yields. Comparison of these results with those reported in the literature shows that the current method is efficient, and results in better reaction times and yields of the desired products. Other advantages of this new method are its operational simplicity, easy work-up procedure, and the use of SBA-Pr-SO3H as a reusable and environmentally benign nanoreactor, such that the reaction proceeds easily in its nanopores. We also tested the antimicrobial activity of the prepared compounds using the disc diffusion method, and some of the synthesized compounds exhibited the best results against B. subtilis and S. aureus.
Resumo:
Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by ¹H and 13C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), monoene anacardic acid (3), a-amirine (4), b-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp.
Resumo:
The present study evaluated the pheno- and genotypical antimicrobial resistance profile of coagulase-negative Staphylococcus (CNS) species isolated from dairy cows milk, specially concerning to oxacillin. Of 100 CNS isolates, the S. xylosus was the prevalent species, followed by S. cohnii, S. hominis, S. capitis and S. haemolyticus. Only 6% were phenotypically susceptible to the antimicrobial agents tested in disk diffusion assay. Penicillin and ampicillin resistance rates were significantly higher than others antimicrobials. Four isolates were positive to mecA gene (4%), all represented by the S. xylosus species. The blaZ gene was detected in 16% of the isolates (16/100). It was noticed that all mecA + were also positive to this gene and the presence of both genes was correlated to phenotypic beta-lactamic resistance. We conclude that CNS species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic and genotypic tests, which has implications for treatment and management decisions.
Resumo:
The study aimed to determine the antimicrobial resistance patterns and to identify molecular resistance markers in Staphylococcus spp. (n=210) isolated from small ruminant mastitis in Brazil. The antimicrobial resistance patterns were evaluated by the disk diffusion test and by detection of the presence of mecA, blaZ, ermA, ermB, ermC and msrA genes by PCR. The efflux pump test was performed using ethidium bromide and biofilm production was determined by Congo red agar test along with PCR for detection of the icaD gene. The isolates were most resistant to amoxicillin (50.0%), streptomycin (42.8%), tetracycline (40.4%), lincomycin (39.0%) and erythromycin (33.8%). Pan-susceptibility to all tested drugs was observed in 71 (33.8%) isolates and 41 Staphylococcus isolates were positive for the efflux pump. Although phenotypic resistance to oxacillin was observed in 12.8% of the isolates, none harbored the mecA gene. However, 45.7% of the isolates harbored blaZ indicating that beta-lactamase production was the main mechanism associated with staphylococci resistance to beta-lactams in the present study. The other determinants of resistance to antimicrobial agents ermA, ermB, ermC, and msrA were observed in 1.4%, 10.4%, 16.2%, and 0.9% of the isolates, respectively. In addition, the icaD gen was detected in 32.9% of the isolates. Seventy three isolates (54 from goats and 19 from sheep) were negative for all resistance genes tested and 69 isolates presented two or more resistance genes. Association among blaZ, ermA, ermB, ermC and efflux pump were observed in 17 isolates, 14 of which originated from goats and three from sheep. The data obtained in this study show the resistance of the isolates to beta-lactamics, which may be associated with the use of antimicrobial drugs without veterinary control.
Resumo:
The objective of this study was to evaluate herd management practices and mastitis treatment procedures as risk factors associated with Staphylococcus aureus antimicrobial resistance. For this study, 13 herds were selected to participate in the study to evaluate the association between their management practices and mastitis treatment procedures and in vitro antimicrobial susceptibility. A total of 1069 composite milk samples were collected aseptically from the selected cows in four different periods over two years. The samples were used for microbiological culturing of S. aureus isolates and evaluation of their antimicrobial susceptibility. A total of 756 samples (70.7%) were culture-positive, and S. aureus comprised 27.77% (n=210) of the isolates. The S. aureus isolates were tested using the disk-diffusion susceptibility assay with the following antimicrobials: ampicillin 10mg; clindamycin 2μg; penicillin 1mg; ceftiofur 30μg; gentamicin 10mg; sulfa-trimethoprim 25μg; enrofloxacin 5μg; sulfonamide 300μg; tetracycline 30μg; oxacillin 1mg; cephalothin 30μg and erythromycin 5μg. The variables that were significantly associated with S. aureus resistance were as follows: the treatment of clinical mastitis for ampicillin (OR=2.18), dry cow treatment for enrofloxacin (OR=2.11) and not sending milk samples for microbiological culture and susceptibility tests, for ampicillin (OR=2.57) and penicillin (OR=4.69). In conclusion, the identification of risk factors for S. aureus resistance against various mastitis antimicrobials is an important information that may help in practical recommendations for prudent use of antimicrobial in milk production.
Resumo:
The antibacterial activity of a series of 1,4-naphthoquinones was demonstrated. Disk diffusion tests were carried out against several Gram-positive and Gram-negative bacteria. The compound 5-amino-8-hydroxy-1,4-naphthoquinone was the most effective, presenting inhibition zones measuring 20 mm against staphylococci, streptococci and bacilli at 50 µg/ml. Methicillin-resistant Staphylococcus aureus and several clinical isolates of this bacterium were also inhibited. Naphthazarin, 5-acetamido-8-hydroxy-1,4-naphthoquinone, and 2,3-diamino-1,4-naphthoquinone were the next most active compounds. The minimal inhibitory concentration of the active compounds was determined against S. aureus, ranging from 30 to 125 µg/ml. All compounds presented a minimal bactericidal concentration higher than 500 µg/ml, indicating that their effect was bacteriostatic. The EC50, defined as the drug concentration that produces 50% of maximal effect, was 8 µg/ml for 5-amino-8-hydroxy-1,4-naphthoquinone against S. aureus, S. intermedius, and S. epidermidis. These results indicate an effective in vitro activity of 5-amino-8-hydroxy-1,4-naphthoquinone and encourage further studies for its application in antibiotic therapy.
Resumo:
In 2000, Enterococcus faecalis resistant to vancomycin was first reported at a tertiary hospital in Porto Alegre, southern Brazil. The resistance spread to other hospitals and surveillance programs were established by hospital infection committees to prevent the spread of vancomycin-resistant enterococci. In February 2002, an isolate initially identified at the genus level as Enterococcus was obtained by surveillance culture (rectal swab) from a patient admitted to a hospital for treatment of septic arthritis in the shoulder. The isolate proved to be resistant to vancomycin by the disc diffusion method and confirmed by an E-test resulting in a minimal inhibitory concentration of > or = 256 µg/ml. This isolate was sent to a reference laboratory (Laboratório Especial de Bacteriologia e Epidemiologia Molecular, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP) for further study and proved to be an E. gallinarum by the polymerase chain reaction (PCR) using specific primers for the species. Due to the phenotype of unusually high vancomycin resistance, the isolate presumably had the resistance genes (vanA and vanB) and this was confirmed by PCR, which indicated the presence of the vanA gene. A 10.8-kb Tn1546-related transposon was also identified by long-PCR. Interspecies transfer of the vancomycin-resistance gene from the donor E. gallinarum was performed in a successful conjugation experiment in vitro, using E. faecium GE-1 and E. faecalis JH22 as receptors. This is the first report of the detection of a vanA determinant naturally acquired by E. gallinarum in Brazil, indicating the importance of characterizing VRE by both phenotype and genotype methods.