984 resultados para delayed claiming
Resumo:
Burkholderia cenocepacia causes chronic lung infections in patients suffering from cystic fibrosis and chronic granulomatous disease. We have previously shown that B. cenocepacia survives intracellularly in macrophages within a membrane vacuole (BcCV) that delays acidification. Here, we report that after macrophage infection with live B. cenocepacia there is a approximately 6 h delay in the association of NADPH oxidase with BcCVs, while heat-inactivated bacteria are normally trafficked into NADPH oxidase-positive vacuoles. BcCVs in macrophages treated with a functional inhibitor of the cystic fibrosis transmembrane conductance regulator exhibited a further delay in the assembly of the NADPH oxidase complex at the BcCV membrane, but the inhibitor did not affect NADPH oxidase complex assembly onto vacuoles containing heat-inactivated B. cenocepacia or live Escherichia coli. Macrophages produced less superoxide following B. cenocepacia infection as compared to heat-inactivated B. cenocepacia and E. coli controls. Reduced superoxide production was associated with delayed deposition of cerium perhydroxide precipitates around BcCVs of macrophages infected with live B. cenocepacia, as visualized by transmission electron microscopy. Together, our results demonstrate that intracellular B. cenocepacia resides in macrophage vacuoles displaying an altered recruitment of the NADPH oxidase complex at the phagosomal membrane. This phenomenon may contribute to preventing the efficient clearance of this opportunistic pathogen from the infected airways of susceptible patients.
Resumo:
We present a theoretical analysis of a novel scheme for optical cooling of particles that does not in principle require a closed optical transition. A tightly confined laser beam interacting with a trapped particle experiences a phase shift, which upon reflection from a mirror or resonant microstructure produces a time-delayed optical potential for the particle. This leads to a nonconservative force and friction. A quantum model of the system is presented and analyzed in the semiclassical limit.
Resumo:
Two complementary explanations have been offered by social psychologists to account for the universal hold of national identity, first that national identity is ideologically assumed, as it forms the ‘banal’ background of everyday life, and second that national identity is ‘hotly’ constructed and contested in political and everyday settings to great effect. However, ‘banal’ and ‘hot’ aspects of national identity have been found to be distributed unevenly across national and subnational groups and banality itself can be strategically used to distinguish between different groups. The present paper develops these ideas by examining possible reasons for these different modes and strategies of identity expression. Drawing upon intergroup theories of minority and majority relations, we examine how a group who see themselves unequivocally as a minority, Irish Travellers, talk about their national identity in comparison to an age and gender-matched sample of Irish students. We find that Travellers proactively display and claim ‘hot’ national identity in order to establish their Irishness. Irish students ‘do banality’, police the boundaries and reputation of Irishness, and actively reject and disparage proactive displays of Irishness. The implications for discursive understandings of identity, the study of intra-national group relations and policies of minority inclusion are discussed.
Resumo:
We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ aphysically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 10 g cm, as well as one high central density (5.5 × 10 g cm) and one low central density (1.0 × 10 g cm) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by postprocessing10 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding thewhite dwarf, producing a range of 56Ni masses from 0.32 to 1.11M. As a general trend, the models predict that the stableneutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (~3000×10 000 km s) in a shell surrounding a Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s, respectively. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P <0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.
Resumo:
To use protein kinase C (PKC) d-knockout mice to investigate the role of PKCd in lesion development and to understand the underlying mechanism of the vascular disease.
Resumo:
Burkholderia cenocepacia infects patients with cystic fibrosis. We have previously shown that B. cenocepacia can survive in macrophages within membrane vacuoles (BcCVs) that preclude fusion with the lysosome. The bacterial factors involved in B. cenocepacia intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low-molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to B. cenocepacia strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to parental strain and deletion mutants in other LMW-PTPs that are widely conserved in Burkholderia species, a greater proportion of BcCVs containing the BCAM0628 mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since BCAM0628 survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as dpm (delayed phagosome maturation). We provide evidence that the Dpm protein is secreted during growth in vitro and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in B. multivorans confers to this bacterium a similar phagosomal maturation delay as found with B. cenocepacia. We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.
Resumo:
In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here,we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width- luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.
Resumo:
Purpose: To examine whether the levels of micronuclei induction, as a marker for genomic instability in the progeny of X-irradiated cells, correlates with DNA repair function.
Materials and methods: Two repair deficient cell lines (X-ray repair cross-complementing 1 [XRCC1] deficient cell line [EM9] and X-ray repair cross complementing 5 [XRCC5; Ku80] deficient X-ray sensitive Chinese hamster ovary [CHO] cell line [xrs5]) were used in addition to wild-type CHO cells. These cells were irradiated with low doses of X-rays (up to 1 Gy). Seven days after irradiation, micronuclei formed in binucleated cells were counted. To assess the contribution of the bystander effect micronuclei induction was measured in progeny of non-irradiated cells co-cultured with cells that had been irradiated with 1Gy.
Results: The delayed induction of micronuclei in 1 Gy-irradiated cells was observed in normal CHO and EM9 but not in xrs5. In the clone analysis, progenies of xrs5 under bystander conditions showed significantly higher levels of micronuclei, while CHO and EM9 did not.
Conclusion: Genomic instability induced by X-irradiation is associated with DSB (double-strand break) repair, even at low doses. It is also suggested that bystander signals, which lead to genomic instability, may be enhanced when DSB repair is compromised.
Resumo:
This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.