719 resultados para cranial calvarial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trepanation is defined as the intentional perforation of the cranial vault with removal of a piece of skull bone. In Europe, trepanation is known to have been practiced at least since the Neolithic, and it can still be found today in East African native tribes. Two skulls with lesions from the Late Iron Age site Münsingen-Rain (420–240 BC) were investigated. The aim of this study was to analyse the lesions and to determine whether they were caused by surgical interventions. Both individuals were analysed by current morphologic-anthropological methods and radiological examinations were performed with a multislice CT-scanner. Additionally, this work surveys trepanations reported in Switzerland and calculates survival rates. In Switzerland, 34 individuals with trepanations have been published. As a tendency, the survival rate appears to be relatively high from the Neolithic to Late Antiquity but then decreases until Pre-Modern times. The 78% survival rate in Late Iron Age Switzerland indicates that the surgery was often performed successfully. Skull injuries sustained in conflicts could have been a reason for trepanation during the Iron Age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrastructural study of the hypoglossal nucleus (XII) in the rat has revealed two distinct neuronal populations. Hypoglossal motoneurons comprised the largest population of neurons in XII and were identified following injection of horseradish peroxidase (HRP) into the tongue. Motoneurons were large (25-50(mu)m), multipolar in shape and distributed throughout XII. The nucleus was large, round and centrally located, and the cytoplasm was characterized by dense lamellar arrays of rough endoplasmic reticulum. In contrast, a second population of small (10-18(mu)m), round to oval shaped neurons was found restricted to the ventral and dorsolateral regions of XII. The nucleus was markedly invaginated and eccentric, the cytoplasm scant and filled with free ribosomes, and the absence of lamellar arrays of rough endoplasmic reticulum was conspicuous. Neurons of this type were never found to contain HRP reaction product. These results demonstrate that the hypoglossal nucleus does not consist solely of motoneurons, but includes a distinctly separate, presumably non-motoneuronal pool. Arguments are presented in favor of this second neuron population being interneurons. The functional significance of these findings in relation to tongue control is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MacMARCKS is a member of the MARCKS family of protein kinase C (PKC) substrates. Biochemical evidence demonstrates that these proteins integrate calcium and PKC-dependent signals to regulate actin structure at the membrane. We report here that deletion of the MacMARCKS gene prevents cranial neural tube closure in the developing brain, resulting in anencephaly. This suggests a central role for MacMARCKS and the PKC signal transduction pathway in the folding of the anterior neural plate during the early phases of brain formation, and supports the hypothesis that actin-based motility directs cranial neural tube closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordinate growth of the brain and skull is achieved through a series of interactions between the developing brain, the growing bones of the skull, and the fibrous joints, or sutures, that unite the bones. These interactions couple the expansion of the brain to the growth of the bony plates at the sutures. Craniosynostosis, the premature fusion of the bones of the skull, is a common birth defect (1 in 3000 live births) that disrupts coordinate growth and often results in profoundly abnormal skull shape. Individuals affected with Boston-type craniosynostosis, an autosomal dominant disorder, bear a mutated copy of MSX2, a homeobox gene thought to function in tissue interactions. Here we show that expression of the mouse counterpart of this mutant gene in the developing skulls of transgenic mice causes craniosynostosis and ectopic cranial bone. These mice provide a transgenic model of craniosynostosis as well as a point of entry into the molecular mechanisms that coordinate the growth of the brain and skull.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

v.6:no.7(1934)