936 resultados para chest radiograph
Resumo:
BackgroundDespite the increasingly higher spatial and contrast resolution of CT, nodular lesions are prone to be missed on chest CT. Tinted lenses increase visual acuity and contrast sensitivity by filtering short wavelength light of solar and artificial origin.PurposeTo test the impact of Gunnar eyewear, image quality (standard versus low dose CT) and nodule location on detectability of lung nodules in CT and to compare their individual influence.Material and MethodsA pre-existing database of CT images of patients with lung nodules >5 mm, scanned with standard does image quality (150 ref mAs/120 kVp) and lower dose/quality (40 ref mAs/120 kVp), was used. Five radiologists read 60 chest CTs twice: once with Gunnar glasses and once without glasses with a 1 month break between. At both read-outs the cases were shown at lower dose or standard dose level to quantify the influence of both variables (eyewear vs. image quality) on nodule sensitivity.ResultsThe sensitivity of CT for lung nodules increased significantly using Gunnar eyewear for two readers and insignificantly for two other readers. Over all, the mean sensitivity of all radiologist raised significantly from 50% to 53%, using the glasses (P value = 0.034). In contrast, sensitivity for lung nodules was not significantly affected by lowering the image quality from 150 to 40 ref mAs. The average sensitivity was 52% at low dose level, that was even 0.7% higher than at standard dose level (P value = 0.40). The strongest impact on sensitivity had the factors readers and nodule location (lung segments).ConclusionSensitivity for lung nodules was significantly enhanced by Gunnar eyewear (+3%), while lower image quality (40 ref mAs) had no impact on nodule sensitivity. Not using the glasses had a bigger impact on sensitivity than lowering the image quality.
Resumo:
Traditionally, non-invasive monitoring of tidal volume in infants has been performed using impedance plethysmography analyzed using a one or two compartment model. We developed a new laser system for use in infants, which measures antero-posterior movement of the chest wall during quiet sleep. In 24 unsedated or sedated infants (11 healthy, 13 with respiratory disease), we examined whether the analysis of thoracoabdominal movement based on a three compartment model could more accurately estimate tidal volume in comparison to V(T) measured at the mouth. Using five laser signals, chest wall movements were measured at the right and left, upper and lower ribcage and the abdomen. Within the tidal volume range from 4.6 to 135.7 ml, a three compartment model showed good short term repeatability and the best agreement with tidal volume measured at mouth (r(2) = 0.86) compared to that of a single compartment model (r(2) = 0.62, P < 0.0001) and a two compartment model (r(2) = 0.82, P < 0.01), particularly in the presence of respiratory disease. Three compartment modeling of a 5 laser thoracoabdominal monitoring permits more accurate estimates of tidal volume in infants and potentially of regional differences of chest wall displacement in future studies.
Resumo:
The purpose of this retrospective study was to evaluate the impact of energy subtraction (ES) chest radiography on the detection of pulmonary nodules and masses in daily routine. Seventy-seven patients and 25 healthy subjects were examined with a single exposure digital radiography system. Five blinded readers evaluated first the non-subtracted PA and lateral chest radiographs alone and then together with the subtracted PA soft tissue images. The size, location and number of lung nodules or masses were registered with the confidence level. CT was used as standard of reference. For the 200 total lesions, a sensitivity of 33.5-52.5% was found at non-subtracted and a sensitivity of 43.5-58.5% at energy-subtracted radiography, corresponding to a significant improvement in four of five readers (p < 0.05). However, in three of five readers the rate of false positives was higher with ES. With ES, sensitivity, but not the area under the alternative free-response receiver operating characteristics (AFROC) curve, showed a good correlation with reader experience (R = 0.90, p = 0.026). In four of five readers, the diagnostic confidence improved with ES (p = 0.0036). We conclude that single-exposure digital ES chest radiography improves detection of most pulmonary nodules and masses, but identification of nodules <1 cm and false-positive findings remain a problem.
Resumo:
This paper addresses the problem of estimating postoperative cup alignment from single standard X-ray radiograph with gonadal shielding. The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior radiograph is known inaccurate, largely due to the wide variability in individual pelvic position relative to X-ray plate. 2D-3D image registration methods have been introduced to estimate the rigid transformation between a preoperative CT volume and postoperative radiograph(s) for an accurate estimation of the postoperative cup alignment relative to an anatomical reference extracted from the CT data. However, these methods require either multiple radiographs or a radiograph-specific calibration, both of which are not avaiable for most retrospective studies. Furthermore, these methods were only evaluated on X-ray radiograph(s) without gonadal shielding. In this paper, we propose to use a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration to estimate the rigid transfromation for a precise estimation of cup alignment. Quantitative and qualitative results evaluated on clinical and cadaveric datasets are given which indicate the validity of our approach.
Resumo:
When patients enter our emergency room with suspected multiple injuries, Statscan provides a full body anterior and lateral image for initial diagnosis, and then zooms in on specific smaller areas for a more detailed evaluation. In order to examine the possible role of Statscan in the management of multiply injured patients we implemented a modified ATLS((R)) algorithm, where X-ray of C-spine, chest and pelvis have been replaced by single-total a.p./lat. body radiograph. Between 15 October 2006 and 1 February 2007 143 trauma patients (mean ISS 15+/-14 (3-75)) were included. We compared the time in resuscitation room to 650 patients (mean ISS 14+/-14 (3-75)) which were treated between 1 January 2002 and 1 January 2004 according to conventional ATLS protocol. The total-body scanning time was 3.5 min (3-6 min) compared to 25.7 (8-48 min) for conventional X-rays, The total ER time was unchanged 28.7 min (13-58 min) compared to 29.1 min (15-65 min) using conventional plain radiography. In 116/143 patients additional CT scans were necessary. In 98/116 full body trauma CT scans were performed. In 18/116 patients selective CT scans were ordered based on Statscan findings. In 43/143 additional conventional X-rays had to be performed, mainly due to inadequate a.p. views of fractured bones. All radiographs were transmitted over the hospital network (Picture Archiving and Communication System, PACS) for immediate simultaneous viewing at different places. The rapid availability of images for interpretation because of their digital nature and the reduced need for repeat exposures because of faulty radiography are also felt to be strengths.
Resumo:
OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.
Resumo:
OBJECTIVE: Postmortem examination of chest trauma is an important domain in forensic medicine, which is today performed using autopsy. Since the implementation of cross-sectional imaging methods in forensic medicine such as computed tomography (CT) and magnetic resonance imaging (MRI), a number of advantages in comparison with autopsy have been described. Within the scope of validation of cross-sectional radiology in forensic medicine, the comparison of findings of postmortem imaging and autopsy in chest trauma was performed. METHODS: This retrospective study includes 24 cases with chest trauma that underwent postmortem CT, MRI, and autopsy. Two board-certified radiologists, blind to the autopsy findings, evaluated the radiologic data independently. Each radiologist interpreted postmortem CT and MRI data together for every case. The comparison of the results of the radiologic assessment with the autopsy and a calculation of interobserver discrepancy was performed. RESULTS: Using combined CT and MRI, between 75% and 100% of the investigated findings, except for hemomediastinum (70%), diaphragmatic ruptures (50%; n=2) and heart injury (38%), were discovered. Although the sensitivity and specificity regarding pneumomediastinum, pneumopericardium, and pericardial effusion were not calculated, as these findings were not mentioned at the autopsy, these findings were clearly seen radiologically. The averaged interobserver concordance was 90%. CONCLUSION: The sensitivity and specificity of our results demonstrate that postmortem CT and MRI are useful diagnostic methods for assessing chest trauma in forensic medicine as a supplement to autopsy. Further radiologic-pathologic case studies are necessary to define the role of postmortem CT and MRI as a single examination modality.
Resumo:
AIM: The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. MATERIALS AND METHODS: Twelve anaesthetized pigs (26+/-1kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. RESULTS: IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO(2) (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. CONCLUSION: A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.
Resumo:
We applied predicted vital capacity to chest size matching between donor and recipient in lung transplantation to 15 single-lung transplant recipients with pulmonary fibrosis and to 20 double-lung transplant recipients with emphysema or non-emphysema. The predicted vital capacity of the donor was significantly correlated with the predicted vital capacity of the recipient both in double-lung transplantation (r = 0.79, p = 0.001) and single-lung transplantation (r = 0.71, p = 0.003). In double-lung transplantation, the post-transplant vital capacity was correlated with the predicted vital capacity of the recipient (r = 0.74, p = 0.002). Emphysema patients and non-emphysema patients contributed equally to this correlation. In left single lung transplantation, there was a weak correlation between the post-transplant vital capacity and the predicted vital capacity of the donor in the allograft (r = 0.57, p = 0.1095). In right single lung transplantation, the post-transplant vital capacity of the allograft tended to be correlated with the predicted vital capacity of recipient (r = 0.77, p = 0.0735). We concluded that donors were actually selected based on the comparison of predicted vital capacity between donor and recipient. In double-lung transplantation, the post-transplant vital capacity was limited by the recipient's normal thoracic volume and was not influenced by underlying pulmonary disease. In single-lung transplantation with pulmonary fibrosis, the allograft transplanted in the left chest could expand to its own size, and the allograft transplanted in the right chest could expand to the recipient's normal thoracic volume as in double-lung transplantation.
Resumo:
PURPOSE: The aim of this study was to evaluate ECG-gated whole chest CTA as a routine triage tool for patients with acute chest pain. MATERIAL AND METHODS: Whole chest CTA with retrospective ECG-gating was performed in 30 patients with acute atypical chest pain. The ten main segments of the coronary arteries, the pulmonary arteries, the aorta, and the myocardium (function, morphology) were independently analyzed by a resident and two senior radiologists. The inter-observer agreement between resident and senior radiologists was calculated. A final diagnosis was determined by consensus. RESULTS: Thirty patients were included. The coronary artery segments, myocardium and pulmonary arteries were considered analyzable in 84%, 90% and 97% of cases respectively. A final diagnosis for the cause of pain was retained in 19 patients: significant coronary artery stenosis (5), pulmonary embolus (5), aortic dissection (1), hypokinetic cardiomyopathy (2), lung parenchymal abnormalities (5), and hiatus hernia (1). Inter-observer agreement ranged from 0.76 to 1 between senior radiologists and from 0.76 to 1 between resident and senior radiologists. The average time of image interpretation ranged from 14 to 15 minutes. CONCLUSION: ECG-gated whole chest CT angiography appears as a promising tool for the evaluation of acute chest pain. Combined evaluation of appearance and function of the myocardium can reveal additional interesting information.