253 resultados para brake
Resumo:
The performance and emissions behavior of a Rover 1S/60 turboshaft engine when operated with several blends of aviation kerosene and ox tallow ethyl-ester are shown in this article. The tests were performed with a compressor shaft coupled to an hydraulic dynamometer where data of power and mass fuel flow were collected to determine the brake specific fuel consumption. A flue gas analyzer was positioned at the exhaust duct to collect oxygen, carbon dioxide, carbon monoxide and nitrous oxides. An increase in the specific fuel consumption was observed due to the lesser lower heating value of the most oxygenated blends. However, reductions of CO, CO2 and NO (x) have been observed and no-significant ill effects have occurred in the turbine operation.
Resumo:
The brake system of a Formula SAE car has determinant character in the quality of the project. Any flaw in the design of the brakes, the vehicle is rejected for the competition. The project well done, and its smooth operation, depends on some variables that should be studied and linked to the brake components, as needed by the vehicle. After the calculations, the components were defined according to commercial availability. So it is interesting simulation of braking when the vehicle will be submitted before the implementation of the brake system, saving time and cost. This project also enable the comparison between components from different brands. This work shows the study of a method that would allow simulate and test the brake system in an upcoming project for a bench test
Resumo:
The growing demand for quality at competitive prices and fast production process put to the test function in the industrial Maintenance. The need for equipment with high availability to fit this fierce competitiveness makes maintenance becomes essentially reliable. Despite this current context, many companies still have an old view of maintenance, focused only on corrective services, and proposals for change are often neglected due to the sense of urgency day to day. Thus, this study aims to demonstrate through theoretical applicability of simple tool, but of great value in increasing reliability within the maintenance sector of an industry, applying the concepts of Reliability Centered Maintenance – RCM and Analysis tool Failure Modes and Effects – FMEA in equipment of a chemical company directly involved in the manufacturing process of the brake fluid, which this product is used in vehicles around the country. That way, you can identify the types, occurrence and criticality of each failure and evaluate assertively decision making for each device, avoiding unnecessary downtime and potential failures of the same
Resumo:
The automobilist Market is more competitive each day, with new products developed by great technological innovations, daily challenging new concepts of Engineering. This monograph aims to explain the development of a brake system project completely, with emphasis on preliminary calculations made from a worksheet in Excel, for a better understanding of the components, which can be improved further in order to achieve the goals of company. It is through the preliminary calculations that we can have a reasonable first system estimate. The whole set is then analyzed for performance, cost and mass by competitors benchmarking. In terms of confidentiality, all data is fictional, but viable. The motivation for this study is approach an extracurricular topic, which essence is designing, base of engineering. The results obtained in software and field tests prove the validity of the study and assist in the continuous improvement of product development
Resumo:
In today's competitive environment of automakers, it is essential to obtain the highest efficiency of the production process. This paper presents a study in a pre-assembly of brake pipes and fuel of a vehicle where the value stream maps and information (VSM – Value Stream Mapping) were designed in order to improve the process by reducing the Lead Time Production of a product, reducing waste and decrease time between processes. This work can be divided into three stages, the first building the VSM of the initial state, the second VSM of the proposed state and finally the VSM than was actually performed and to present the gains were achieved effectively. The proposed VSM would lead to a gain of 54% in lead time and 61% in processing time, since the VSM implemented had gains of 47% in lead time and 48% in processing time even without major investments as originally proposed. Concluding that even without big investment, using the techniques of lean manufacturing is possible to achieve high levels of process efficiency
Resumo:
Baja SAE competitions challenge engineering students to design and build offroad vehicles, preparing them for the competitive job market. This monograph aims to study a part of the braking of a Baja SAE vehicle system, the brake disc. Giving attention to the wear suffered by discs of two different materials, steel 1045 and stainless steel 304, helping the team Piratas do Vale Bardahl in the best selection between them. Braking tests were performed on a test bench. Both discs have suffered the same braking conditions. Brake pads material, brake line pressure, braking time, number of braking, were parameters which were repeated in the testing of different types of disk, in order to ensure a high power comparison between the obtained data. Before and after the disk tests were weighed and measured, to make a comparison. After the brake tests, the disks were subjected to hardness and surface roughness testing. With the data collected and observations made in the worn parts, the comparison between these two materials was made, obtaining a selection of the best material for the team. The tests showed that steel 1045 has more advantages, compared to stainless steel 304, when applied to brake discs, on the tested conditions
Resumo:
Considering that the Brazilian energy source is based on hydroelectric power plants, every moment that it does not rain enough, we are likely to suffer power outage. Making the rational use of energy not only is wise, but also important for financial issues. The industrial sector is of great importance to Brazilian economic context, because it is one that creates more wealth and jobs. It should be noted that it is one of the sectors that consume more electricity. One of the most used equipment in industry is the three phase induction motor, which ends up providing significant waste of energy. For that reasons, studying three phase induction motors is important. One of the ways to evaluate the parameter of the three phase induction motor is using a dynamometer mechanic or electric. This work aims at further studies (and development) of electrodynamometer brake, a type of electrical dynamometer, that is the only one with reversible use. This means, it is possible to measure both the torque and the power transmitted by the electric motors, by the direct method and the indirect. Besides it allows greater stability in the imposition of charges, due to its nature of being able to regenerate the energy imparted by the engines being tested
Resumo:
This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations
Resumo:
Considering that the Brazilian energy source is based on hydroelectric power plants, every moment that it does not rain enough, we are likely to suffer power outage. Making the rational use of energy not only is wise, but also important for financial issues. The industrial sector is of great importance to Brazilian economic context, because it is one that creates more wealth and jobs. It should be noted that it is one of the sectors that consume more electricity. One of the most used equipment in industry is the three phase induction motor, which ends up providing significant waste of energy. For that reasons, studying three phase induction motors is important. One of the ways to evaluate the parameter of the three phase induction motor is using a dynamometer mechanic or electric. This work aims at further studies (and development) of electrodynamometer brake, a type of electrical dynamometer, that is the only one with reversible use. This means, it is possible to measure both the torque and the power transmitted by the electric motors, by the direct method and the indirect. Besides it allows greater stability in the imposition of charges, due to its nature of being able to regenerate the energy imparted by the engines being tested
Resumo:
This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations
Resumo:
Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of traps in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing zone, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational zone. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of traps and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.
Resumo:
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.
Resumo:
A push to reduce dependency on foreign energy and increase the use of renewable energy has many gas stations pumping ethanol blended fuels. Recreational engines typically have less complex fuel management systems than that of the automotive sector. This prevents the engine from being able to adapt to different ethanol concentrations. Using ethanol blended fuels in recreational engines raises several consumer concerns. Engine performance and emissions are both affected by ethanol blended fuels. This research focused on assessing the impact of E22 on two-stroke and four-stroke snowmobiles. Three snowmobiles were used for this study. A 2009 Arctic Cat Z1 Turbo with a closed-loop fuel injection system, a 2009 Yamaha Apex with an open-loop fuel injection system and a 2010 Polaris Rush with an open-loop fuel injection system were used to determine the impact of E22 on snowmobile engines. A five mode emissions test was conducted on each of the snowmobiles with E0 and E22 to determine the impact of the E22 fuel. All of the snowmobiles were left in stock form to assess the effect of E22 on snowmobiles currently on the trail. Brake specific emissions of the snowmobiles running on E22 were compared to that of the E0 fuel. Engine parameters such as exhaust gas temperature, fuel flow, and relative air to fuel ratio (λ) were also compared on all three snowmobiles. Combustion data using an AVL combustion analysis system was taken on the Polaris Rush. This was done to compare in-cylinder pressures, combustion duration, and location of 50% mass fraction burn. E22 decreased total hydrocarbons and carbon monoxide for all of the snowmobiles and increased carbon dioxide. Peak power increased for the closed-loop fuel injected Arctic Cat. A smaller increase of peak power was observed for the Polaris due to a partial ability of the fuel management system to adapt to ethanol. A decrease in peak power was observed for the open-loop fuel injected Yamaha.
Resumo:
The reserves of gasoline and diesel fuels are ever decreasing, which plays an important role in the technological development of automobiles. Numerous countries, especially the United States, wish to slowly decrease their fuel dependence on other countries by producing in house renewable fuels like biodiesels or ethanol. Therefore, the new automobile engines have to successfully run on a variety of fuels without significant changes to their designs. The current study focuses on assessing the potential of ethanol fuels to improve the performance of 'flex-fuel SI engines,' which literally means 'engines that are flexible in their fuel requirement.' Another important area within spark ignition (SI) engine research is the implementation of new technologies like Variable Valve Timing (VVT) or Variable Compression Ratio (VCR) to improve engine performance. These technologies add more complexity to the original system by adding extra degrees of freedom. Therefore, the potential of these technologies has to be evaluated before they are installed in any SI engine. The current study focuses on evaluating the advantages and drawbacks of these technologies, primarily from an engine brake efficiency perspective. The results show a significant improvement in engine efficiency with the use of VVT and VCR together. Spark ignition engines always operate at a lower compression ratio as compared to compression ignition (CI) engines primarily due to knock constraints. Therefore, even if the use of a higher compression ratio would result in a significant improvement in SI engine efficiency, the engine may still operate at a lower compression ratio due to knock limitations. Ethanol fuels extend the knock limit making the use of higher compression ratios possible. Hence, the current study focuses on using VVT, VCR, and ethanol-gasoline blends to improve overall engine performance. The results show that these technologies promise definite engine performance improvements provided both their positive and negative potentials have been evaluated prior to installation.
Resumo:
Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.