977 resultados para bee colonies
Resumo:
Human B cell colonies were grown from peripheral blood of 12 patients with systemic lupus erythematosus (SLE) and from 12 healthy control subjects. The SLE group showed a large increase (p less than 0.001) in the number of colony forming cells (CFC) present in peripheral blood as compared with controls. The CFC were of the pre-B cell type. There was also a loss of OKT8+ cell inhibition of B cell colony growth in the SLE group compared with control subjects.
Resumo:
Following allergen exposure, cytokines and other pro-inflammatory signals play an important role in the immunological cascade leading to allergic sensitization. Inflammasomes sense exogenous and endogenous danger signals and trigger IL-1β and IL-18 activation which in turn shape Th2 responses. Honey bee venom (BV) allergies are very common; however, the local inflammatory cascade leading to the initiation of allergic sensitization is poorly understood. In this study, the local inflammatory cascades in skin after exposure to BV were investigated.
Resumo:
BACKGROUND: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.
Resumo:
Collection : Encyclopédie théorique & pratique des connaissances civiles & militaires ; partie 2, livre 7, t. 1
Resumo:
1943/09 (N1).
Resumo:
1943/11 (N2)-1943/12.
Resumo:
Collection : Bibliothèque instructive
Resumo:
1913 (T38,N409)- (T38,N420).
Resumo:
1899 (T24,N241)- (T24,N252).
Resumo:
1905 (T30,N313)- (T30,N324).
Resumo:
1906 (T31,N325)- (T31,N336).
Resumo:
1896 (T21,N205)- (T21,N216).
Resumo:
1892/01/01 (T15,N133)-1892/06/15 (T15,N144).
Resumo:
1897 (T22,N217)- (T22,N228).