919 resultados para autoregressive distributed lag model
Resumo:
A Bayesian Model Averaging approach to the estimation of lag structures is introduced, and applied to assess the impact of R&D on agricultural productivity in the US from 1889 to 1990. Lag and structural break coefficients are estimated using a reversible jump algorithm that traverses the model space. In addition to producing estimates and standard deviations for the coe¢ cients, the probability that a given lag (or break) enters the model is estimated. The approach is extended to select models populated with Gamma distributed lags of di¤erent frequencies. Results are consistent with the hypothesis that R&D positively drives productivity. Gamma lags are found to retain their usefulness in imposing a plausible structure on lag coe¢ cients, and their role is enhanced through the use of model averaging.
Resumo:
As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.
Resumo:
Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications.
Resumo:
A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.
Resumo:
Although financial theory rests heavily upon the assumption that asset returns are normally distributed, value indices of commercial real estate display significant departures from normality. In this paper, we apply and compare the properties of two recently proposed regime switching models for value indices of commercial real estate in the US and the UK, both of which relax the assumption that observations are drawn from a single distribution with constant mean and variance. Statistical tests of the models' specification indicate that the Markov switching model is better able to capture the non-stationary features of the data than the threshold autoregressive model, although both represent superior descriptions of the data than the models that allow for only one state. Our results have several implications for theoretical models and empirical research in finance.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The problem of reconfiguration of distribution systems considering the presence of distributed generation is modeled as a mixed-integer linear programming (MILP) problem in this paper. The demands of the electric distribution system are modeled through linear approximations in terms of real and imaginary parts of the voltage, taking into account typical operating conditions of the electric distribution system. The use of an MILP formulation has the following benefits: (a) a robust mathematical model that is equivalent to the mixed-integer non-linear programming model; (b) an efficient computational behavior with exiting MILP solvers; and (c) guarantees convergence to optimality using classical optimization techniques. Results from one test system and two real systems show the excellent performance of the proposed methodology compared with conventional methods. © 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
This article shows a transmission line model developed directly in the phase domain. The proposed model is based on the relationships between the phase currents and voltages at both the sending and receiving ends of a single-phase line. These relationships, established using an ABCD matrix, were extended to multi-phase lines. The proposed model was validated by using it to represent a transmission line during short-and open-circuit tests. The results obtained with the proposed model were compared with results obtained with a classical model based on modal decomposition. These comparisons show that proposed model was correctly developed. © 2013 Taylor and Francis Group, LLC.