393 resultados para autocorrelation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many questions in evolutionary biology require an estimate of divergence times but, for groups with a sparse fossil record, such estimates rely heavily on molecular dating methods. The accuracy of these methods depends on both an adequate underlying model and the appropriate implementation of fossil evidence as calibration points. We explore the effect of these in Poaceae (grasses), a diverse plant lineage with a very limited fossil record, focusing particularly on dating the early divergences in the group. We show that molecular dating based on a data set of plastid markers is strongly dependent on the model assumptions. In particular, an acceleration of evolutionary rates at the base of Poaceae followed by a deceleration in the descendants strongly biases methods that assume an autocorrelation of rates. This problem can be circumvented by using markers that have lower rate variation, and we show that phylogenetic markers extracted from complete nuclear genomes can be a useful complement to the more commonly used plastid markers. However, estimates of divergence times remain strongly affected by different implementations of fossil calibration points. Analyses calibrated with only macrofossils lead to estimates for the age of core Poaceae ∼51-55 Ma, but the inclusion of microfossil evidence pushes this age to 74-82 Ma and leads to lower estimated evolutionary rates in grasses. These results emphasize the importance of considering markers from multiple genomes and alternative fossil placements when addressing evolutionary issues that depend on ages estimated for important groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RésuméLa coexistence de nombreuses espèces différentes a de tout temps intrigué les biologistes. La diversité et la composition des communautés sont influencées par les perturbations et l'hétérogénéité des conditions environnementales. Bien que dans la nature la distribution spatiale des conditions environnementales soit généralement autocorrélée, cet aspect est rarement pris en compte dans les modèles étudiant la coexistence des espèces. Dans ce travail, nous avons donc abordé, à l'aide de simulations numériques, la coexistence des espèces ainsi que leurs caractéristiques au sein d'un environnement autocorrélé.Afin de prendre en compte cet élément spatial, nous avons développé un modèle de métacommunauté (un ensemble de communautés reliées par la dispersion des espèces) spatialement explicite. Dans ce modèle, les espèces sont en compétition les unes avec les autres pour s'établir dans un nombre de places limité, dans un environnement hétérogène. Les espèces sont caractérisées par six traits: optimum de niche, largeur de niche, capacité de dispersion, compétitivité, investissement dans la reproduction et taux de survie. Nous nous sommes particulièrement intéressés à l'influence de l'autocorrélation spatiale et des perturbations sur la diversité des espèces et sur les traits favorisés dans la métacommunauté. Nous avons montré que l'autocorrélation spatiale peut avoir des effets antagonistes sur la diversité, en fonction du taux de perturbations considéré. L'influence de l'autocorrélation spatiale sur la capacité de dispersion moyenne dans la métacommunauté dépend également des taux de perturbations et survie. Nos résultats ont aussi révélé que de nombreuses espèces avec différents degrés de spécialisation (i.e. différentes largeurs de niche) peuvent coexister. Toutefois, les espèces spécialistes sont favorisées en absence de perturbations et quand la dispersion est illimitée. A l'opposé, un taux élevé de perturbations sélectionne des espèces plus généralistes, associées avec une faible compétitivité.L'autocorrélation spatiale de l'environnement, en interaction avec l'intensité des perturbations, influence donc de manière considérable la coexistence ainsi que les caractéristiques des espèces. Ces caractéristiques sont à leur tour souvent impliquées dans d'importants processus, comme le fonctionnement des écosystèmes, la capacité des espèces à réagir aux invasions, à la fragmentation de l'habitat ou aux changements climatiques. Ce travail a permis une meilleure compréhension des mécanismes responsables de la coexistence et des caractéristiques des espèces, ce qui est crucial afin de prédire le devenir des communautés naturelles dans un environnement changeant.AbstractUnderstanding how so many different species can coexist in nature is a fundamental and long-standing question in ecology. Community diversity and composition are known to be influenced by heterogeneity in environmental conditions and disturbance. Though in nature the spatial distribution of environmental conditions is frequently autocorrelated, this aspect is seldom considered in models investigating species coexistence. In this work, we thus addressed several questions pertaining to species coexistence and composition in spatially autocorrelated environments, with a numerical simulations approach.To take into account this spatial aspect, we developed a spatially explicit model of metacommunity (a set of communities linked by dispersal of species). In this model, species are trophically equivalent, and compete for space in a heterogeneous environment. Species are characterized by six life-history traits: niche optimum, niche breadth, dispersal, competitiveness, reproductive investment and survival rate. We were particularly interested in the influence of environmental spatial autocorrelation and disturbance on species diversity and on the traits of the species favoured in the metacommunity. We showed that spatial autocorrelation can have antagonistic effects on diversity depending on disturbance rate. Similarly, spatial autocorrelation interacted with disturbance rate and survival rate to shape the mean dispersal ability observed in the metacommunity. Our results also revealed that many species with various degrees of specialization (i.e. different niche breadths) can coexist together. However specialist species were favoured in the absence of disturbance, and when dispersal was unlimited. In contrast, high disturbance rate selected for more generalist species, associated with low competitive ability.The spatial structure of the environment, together with disturbance and species traits, thus strongly impacts species diversity and, more importantly, species composition. Species composition is known to affect several important metacommunity properties such as ecosystem functioning, resistance and reaction to invasion, to habitat fragmentation and to climate changes. This work allowed a better understanding of the mechanisms responsible for species composition, which is of crucial importance to predict the fate of natural metacommunities in changing environments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we develop a new linear approach to identify the parameters of a moving average (MA) model from the statistics of the output. First, we show that, under some constraints, the impulse response of the system can be expressed as a linear combination of cumulant slices. Then, thisresult is used to obtain a new well-conditioned linear methodto estimate the MA parameters of a non-Gaussian process. Theproposed method presents several important differences withexisting linear approaches. The linear combination of slices usedto compute the MA parameters can be constructed from dif-ferent sets of cumulants of different orders, providing a generalframework where all the statistics can be combined. Further-more, it is not necessary to use second-order statistics (the autocorrelation slice), and therefore the proposed algorithm stillprovides consistent estimates in the presence of colored Gaussian noise. Another advantage of the method is that while mostlinear methods developed so far give totally erroneous estimates if the order is overestimated, the proposed approach doesnot require a previous estimation of the filter order. The simulation results confirm the good numerical conditioning of thealgorithm and the improvement in performance with respect to existing methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Biogeographical models of species' distributions are essential tools for assessing impacts of changing environmental conditions on natural communities and ecosystems. Practitioners need more reliable predictions to integrate into conservation planning (e.g. reserve design and management). 2. Most models still largely ignore or inappropriately take into account important features of species' distributions, such as spatial autocorrelation, dispersal and migration, biotic and environmental interactions. Whether distributions of natural communities or ecosystems are better modelled by assembling individual species' predictions in a bottom-up approach or modelled as collective entities is another important issue. An international workshop was organized to address these issues. 3. We discuss more specifically six issues in a methodological framework for generalized regression: (i) links with ecological theory; (ii) optimal use of existing data and artificially generated data; (iii) incorporating spatial context; (iv) integrating ecological and environmental interactions; (v) assessing prediction errors and uncertainties; and (vi) predicting distributions of communities or collective properties of biodiversity. 4. Synthesis and applications. Better predictions of the effects of impacts on biological communities and ecosystems can emerge only from more robust species' distribution models and better documentation of the uncertainty associated with these models. An improved understanding of causes of species' distributions, especially at their range limits, as well as of ecological assembly rules and ecosystem functioning, is necessary if further progress is to be made. A better collaborative effort between theoretical and functional ecologists, ecological modellers and statisticians is required to reach these goals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän tutkielman tavoitteena on selvittää Venäjän, Slovakian, Tsekin, Romanian, Bulgarian, Unkarin ja Puolan osakemarkkinoiden heikkojen ehtojen tehokkuutta. Tämä tutkielma on kvantitatiivinen tutkimus ja päiväkohtaiset indeksin sulkemisarvot kerättiin Datastreamin tietokannasta. Data kerättiin pörssien ensimmäisestä kaupankäyntipäivästä aina vuoden 2006 elokuun loppuun saakka. Analysoinnin tehostamiseksi dataa tutkittiin koko aineistolla, sekä kahdella aliperiodilla. Osakemarkkinoiden tehokkuutta on testattu neljällä tilastollisella metodilla, mukaan lukien autokorrelaatiotesti ja epäparametrinen runs-testi. Tavoitteena on myös selvittääesiintyykö kyseisillä markkinoilla viikonpäiväanomalia. Viikonpäiväanomalian esiintymistä tutkitaan käyttämällä pienimmän neliösumman menetelmää (OLS). Viikonpäiväanomalia on löydettävissä kaikilta edellä mainituilta osakemarkkinoilta paitsi Tsekin markkinoilta. Merkittävää, positiivista tai negatiivista autokorrelaatiota, on löydettävissä kaikilta osakemarkkinoilta, myös Ljung-Box testi osoittaa kaikkien markkinoiden tehottomuutta täydellä periodilla. Osakemarkkinoiden satunnaiskulku hylätään runs-testin perusteella kaikilta muilta paitsi Slovakian osakemarkkinoilla, ainakin tarkastellessa koko aineistoa tai ensimmäistä aliperiodia. Aineisto ei myöskään ole normaalijakautunut minkään indeksin tai aikajakson kohdalla. Nämä havainnot osoittavat, että kyseessä olevat markkinat eivät ole heikkojen ehtojen mukaan tehokkaita

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän tutkielman tavoitteena on tarkastella Kiinan osakemarkkinoiden tehokkuutta ja random walk -hypoteesin voimassaoloa. Tavoitteena on myös selvittää esiintyykö viikonpäiväanomalia Kiinan osakemarkkinoilla. Tutkimusaineistona käytetään Shanghain osakepörssin A-sarjan,B-sarjan ja yhdistelmä-sarjan ja Shenzhenin yhdistelmä-sarjan indeksien päivittäisiä logaritmisoituja tuottoja ajalta 21.2.1992-30.12.2005 sekä Shenzhenin osakepörssin A-sarjan ja B-sarjan indeksien päivittäisiä logaritmisoituja tuottoja ajalta 5.10.1992-30.12.2005. Tutkimusmenetelminä käytetään neljä tilastollista menetelmää, mukaan lukien autokorrelaatiotestiä, epäparametrista runs-testiä, varianssisuhdetestiä sekä Augmented Dickey-Fullerin yksikköjuuritestiä. Viikonpäiväanomalian esiintymistä tutkitaan käyttämällä pienimmän neliösumman menetelmää (OLS). Testejä tehdään sekä koko aineistolla että kolmella erillisellä ajanjaksolla. Tämän tutkielman empiiriset tulokset tukevat aikaisempia tutkimuksia Kiinan osakemarkkinoiden tehottomuudesta. Lukuun ottamatta yksikköjuuritestien saatuja tuloksia, autokorrelaatio-, runs- ja varianssisuhdetestien perusteella random walk-hypoteesi hylättiin molempien Kiinan osakemarkkinoiden kohdalla. Tutkimustulokset osoittavat, että molemmilla osakepörssillä B-sarjan indeksien käyttäytyminenon ollut huomattavasti enemmän random walk -hypoteesin vastainen kuin A-sarjan indeksit. Paitsi B-sarjan markkinat, molempien Kiinan osakemarkkinoiden tehokkuus näytti myös paranevan vuoden 2001 markkinabuumin jälkeen. Tutkimustulokset osoittavat myös viikonpäiväanomalian esiintyvän Shanghain osakepörssillä, muttei kuitenkaan Shenzhenin osakepörssillä koko tarkasteluajanjaksolla.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osakemarkkinoilta on jo useiden vuosien ajan julkaistu lukuisia tutkimuksia, joissa on esitetty havaintoja ajallisesta säännönmukaisuudesta osakkeiden hinnoissa, joita ei pystytä selittämään markkinakohtaisilla fundamenteilla. Nämä niin kutsutut kalenterianomaliat esiintyvät tyypillisesti ajallisissa käännepisteissä, kuten vuoden, kuukauden tai viikon vaihtuessa seuraavaksi. Myös erilaisten katkosten, kuten juhlapyhien, kaupankäyntirutiineissa on havaittu aiheuttavan anomalioita. Tutkimuksen tavoitteena oli tutkia osakemarkkinoilla havaittujen kalenterianomalioiden esiintymistä pohjoismaisilla sähkömarkkinoilla. Tutkitut anomaliat olivat viikonpäivä- kuukausi-, kuunvaihde- ja juhlapyhäanomalia. Näiden lisäksi tutkittiin tuottojen käyttäytymistä optioiden erääntymispäivien läheisyydessä. Yksittäisten tuotteiden sijasta tarkastelut suoritettiin sesonki- ja kvartaalituotteista muodostetuilla vuosituotteilla. Testauksessa käytettiin pienimmän neliösumman menetelmää, huomioidenheteroskedastisuuden, autokorrelaation ja multikollineaarisuuden vaikutukset. Pelkkien kalenterimuuttujien lisäksi testit suoritettiin regressiomalleilla, joissa lisäselittäjinä käytettiin spot-hintaa, päästöoikeuden hintaa ja/tai sade-ennusteita. Tarkastelujakso koostui vuosista 1998-2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo tiene por objetivo principal analizar tres funciones de perfil del fuste sobre tres clones de Populus x euramericana (Canadá Blanco, I-214 y MC) en la Comunidad Foral de Navarra para elaborar una tarifa de cubicación con clasificación de volumen. Para minimizar el efecto de la autocorrelación entre los residuos se emplea una estructura de error continua autorregresiva de orden 2 o de orden 3 en función del clon analizado. Por otra parte, se compara el coeficiente local de forma de cada uno de los clones estudiados mediante dos metodologías: el análisis de la varianza de la estimación individual de dicho coeficiente y el contraste del estadístico de máxima verosimilitud entre ajustes, resultando ser el clon Canadá el más cónico de los tres. Los datos utilizados provienen de 143 chopos de plantaciones coetáneas y con mismo marco de plantación (marco real de 4,5 × 4,5 m).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityössä on käsitelty paperin pinnankarkeuden mittausta, joka on keskeisimpiä ongelmia paperimateriaalien tutkimuksessa. Paperiteollisuudessa käytettävät mittausmenetelmät sisältävät monia haittapuolia kuten esimerkiksi epätarkkuus ja yhteensopimattomuus sileiden papereiden mittauksissa, sekä suuret vaatimukset laboratorio-olosuhteille ja menetelmien hitaus. Työssä on tutkittu optiseen sirontaan perustuvia menetelmiä pinnankarkeuden määrittämisessä. Konenäköä ja kuvan-käsittelytekniikoita tutkittiin karkeilla paperipinnoilla. Tutkimuksessa käytetyt algoritmit on tehty Matlab® ohjelmalle. Saadut tulokset osoittavat mahdollisuuden pinnankarkeuden mittaamiseen kuvauksen avulla. Parhaimman tuloksen perinteisen ja kuvausmenetelmän välillä antoi fraktaaliulottuvuuteen perustuva menetelmä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. In order to obtain information about each possible data division we carried out a conditional Monte Carlo simulation with 100,000 samples for each systematically chosen triplet. Robustness and power are studied under several experimental conditions: different autocorrelation levels and different effect sizes, as well as different phase lengths determined by the points of change. Type I error rates were distorted by the presence of autocorrelation for the majority of data divisions. Satisfactory Type II error rates were obtained only for large treatment effects. The relationship between the lengths of the four phases appeared to be an important factor for the robustness and the power of the randomization test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las diferencias geográficas en los niveles de ingresos son importantes para elaborar e implementar políticas en las ciudades. Con el objetivo de estimar el nivel de ingresos y analizar su distribución espacial se presenta un método alternativo e innovador que enlaza estimaciones de salarios provenientes de la Encuesta de Estructura Salarial (EES) con datos del padrón de habitantes (1996) y del Censo (2001) desagregados por secciones censales. Los resultados tienen un nivel de detalle espacial significativamente mejor que los disponibles. Se obtiene el valor de la Renta Salarial Media para cada una de las 2500 secciones censales de los 36 municipios pertenecientes a la AMB y para dos periodos. La Renta Salarial presenta una elevada autocorrelación espacial positiva; zonas con niveles similares se concentran espacialmente. La desigualdad en el AMB ha aumentado en el periodo analizado. Este aumento se debe principalmente al componente intra-municipal, es decir, las diferencias en el interior de cada municipio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GDP has usually been used as a proxy for human well-being. Nevertheless, other social aspects should also be considered, such as life expectancy, infant mortality, educational enrolment and crime issues. With this paper we investigate not only economic convergence but also social convergence between regions in a developing country, Colombia, in the period 1975-2005. We consider several techniques in our analysis: sigma convergence, stochastic kernel estimations, and also several empirical models to find out the beta convergence parameter (cross section and panel estimates, with and without spatial dependence). The main results confirm that we can talk about convergence in Colombia in key social variables, although not in the classic economic variable, GDP per capita. We have also found that spatial autocorrelation reinforces convergence processes through deepening market and social factors, while isolation condemns regions to nonconvergence.