882 resultados para agent-based simulation
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.
Resumo:
During the project, managers encounter numerous contingencies and are faced with the challenging task of making decisions that will effectively keep the project on track. This task is very challenging because construction projects are non-prototypical and the processes are irreversible. Therefore, it is critical to apply a methodological approach to develop a few alternative management decision strategies during the planning phase, which can be deployed to manage alternative scenarios resulting from expected and unexpected disruptions in the as-planned schedule. Such a methodology should have the following features but are missing in the existing research: (1) looking at the effects of local decisions on the global project outcomes, (2) studying how a schedule responds to decisions and disruptive events because the risk in a schedule is a function of the decisions made, (3) establishing a method to assess and improve the management decision strategies, and (4) developing project specific decision strategies because each construction project is unique and the lessons from a particular project cannot be easily applied to projects that have different contexts. The objective of this dissertation is to develop a schedule-based simulation framework to design, assess, and improve sequences of decisions for the execution stage. The contribution of this research is the introduction of applying decision strategies to manage a project and the establishment of iterative methodology to continuously assess and improve decision strategies and schedules. The project managers or schedulers can implement the methodology to develop and identify schedules accompanied by suitable decision strategies to manage a project at the planning stage. The developed methodology also lays the foundation for an algorithm towards continuously automatically generating satisfactory schedule and strategies through the construction life of a project. Different from studying isolated daily decisions, the proposed framework introduces the notion of {em decision strategies} to manage construction process. A decision strategy is a sequence of interdependent decisions determined by resource allocation policies such as labor, material, equipment, and space policies. The schedule-based simulation framework consists of two parts, experiment design and result assessment. The core of the experiment design is the establishment of an iterative method to test and improve decision strategies and schedules, which is based on the introduction of decision strategies and the development of a schedule-based simulation testbed. The simulation testbed used is Interactive Construction Decision Making Aid (ICDMA). ICDMA has an emulator to duplicate the construction process that has been previously developed and a random event generator that allows the decision-maker to respond to disruptions in the emulation. It is used to study how the schedule responds to these disruptions and the corresponding decisions made over the duration of the project while accounting for cascading impacts and dependencies between activities. The dissertation is organized into two parts. The first part presents the existing research, identifies the departure points of this work, and develops a schedule-based simulation framework to design, assess, and improve decision strategies. In the second part, the proposed schedule-based simulation framework is applied to investigate specific research problems.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Resumo:
In this paper, we describe agent-based content retrieval for opportunistic networks, where requesters can delegate content retrieval to agents, which retrieve the content on their behalf. The approach has been implemented in CCNx, the open source CCN framework, and evaluated on Android smart phones. Evaluations have shown that the overhead of agent delegation is only noticeable for very small content. For content larger than 4MB, agent-based content retrieval can even result in a throughput increase of 20% compared to standard CCN download applications. The requester asks every probe interval for agents that have retrieved the desired content. Evaluations have shown that a probe interval of 30s delivers the best overall performance in our scenario because the number of transmitted notification messages can be decreased by up to 80% without significantly increasing the download time.
Resumo:
The agent-based model presented here, comprises an algorithm that computes the degree of hydration, the water consumption and the layer thickness of C-S-H gel as functions of time for different temperatures and different w/c ratios. The results are in agreement with reported experimental studies, demonstrating the applicability of the model. As the available experimental results regarding elevated curing temperature are scarce, the model could be recalibrated in the future. Combining the agent-based computational model with TGA analysis, a semiempirical method is achieved to be used for better understanding the microstructure development in ordinary cement pastes and to predict the influence of temperature on the hydration process.
Resumo:
The aim of this chapter is to discuss the applicability of recently proposed knowledge modelling tools to the development of agent-based systems. The discussion is derived from the real world experience of a particular software tool called KSM (Knowledge Structure Manager). The chapter provides details about this tool and then proceeds to show in which forms the software may be used to support the development of agent-based systems. Two multiagent systems, one in the field of telecommunications management and the other one in the field of flood control, are described. Conclusions about these studies are presented, summarizing the main contributions that knowledge modelling tools can bring to the development of agent-based systems.
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
L'obiettivo della tesi è dimostrare l'utilità e i vantaggi che può fornire il Self-Management del diabete mellito di tipo 1 in un sistema di mobile Health a partire da un modello computazionale Agent-Based. Viene quindi affrontata in maniera approfondita la tematica del mobile Health ed il suo sviluppo nei paesi a basso/medio reddito, illustrando i risultati ottenuti dalla ricerca scientifica fino ad oggi, ed il concetto di Self-Management di malattie croniche, un processo di cura caratterizzato dalla partecipazione autonoma del paziente stesso, fornendo una panoramica degli approcci computazionali sviluppati. Viene quindi studiato il diabete mellito in ogni sua caratteristica, seguito dall'illustrazione di diverse applicazioni per la gestione autonoma della suddetta patologia tutt'ora in commercio. Nel caso di studio vengono effettuate diverse simulazioni, tramite la piattaforma di simulazione MASON, per realizzare varie dinamiche della rete fisiologica di un paziente al fine di stabilire feedback qualitativi per il Self-Management della patologia.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.