963 resultados para action theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I review the construction of an action for open superstring field theory which does not suffer from the contact term problems of other approaches. I also discuss a possible generalization of this action for closed superstring field theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A classical action for open superstring field theory has been proposed which does not suffer from contact term problems. After generalizing this action to include the non-GSO projected states of the Neveu-Schwarz string, the pure tachyon contribution to the tachyon potential is explicitly computed. The potential has a minimum of V = 1/32g(2) which is 60% of the predicted exact minimum of V = 1/2 pi(2)g(2) from D-brane arguments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An open superstring field theory action has been proposed which does not suffer from contact term divergences. In this paper, we compute the on-shell four-point tree amplitude fi om this action using the Giddings map. After including contributions from the quartic term in the action, the resulting amplitude agrees with the first-quantized prescription. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental action, representing a mass dimension-transmuting operator between Dirac and ELKO spinor fields, is performed on the Dirac Lagrangian, in order to lead it into the ELKO Lagrangian. Such a dynamical transformation can be seen as a natural extension of the Standard Model that incorporates dark matter fields. The action of the mass dimension-transmuting operator on a Dirac spinor field, that de fines and introduces such a mapping, is shown to be a composition of the Dirac operator and the nonunitary transformation that maps Dirac spinor fields into ELKO spinor fields, de fined in J. Math. Phys. 4 8, 123517 (2007). This paper gives allowance for ELKO, as a candidate to describe dark matter, to be incorporated in the Standard Model. It is intended to present for the first time, up to our knowledge, the dynamical character of a mapping between Dirac and ELKO spinor fields, transmuting the mass dimension of spin one-half fermionic fields from 3/2 to 1 and from 1 to 3/2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compute an effective action for a composite Higgs boson formed by new fermions belonging to a general technicolor non-Abelian gauge theory, using a quite general expression for the fermionic self-energy that depends on a certain parameter (alpha), that defines the technicolor theory from the extreme walking behavior up to the one with a standard operator product expansion behavior. We discuss the values of the trilinear and quadrilinear scalar couplings. Our calculation spans all the possible physical possibilities for mass and couplings of the composite system. In the case of extreme walking technicolor theories we verify that it is possible to have a composite Higgs boson with a mass as light as the present experimental limit, contrary to the usual expectation of a heavy mass for the composite Higgs boson. In this case we obtain an upper limit for the Higgs boson mass, (M(H)<= O(700) GeV for SU(2)(TC)), and the experimental data on the Higgs boson mass constrain SU(N)(TC) technicolor gauge groups to be smaller than SU(10)(TC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider arbitrary U (1) charged matter non-minimally coupled to the self-dual field in d = 2 + 1. The coupling includes a linear and a rather general quadratic term in the self-dual field. By using both Lagragian gauge embedding and master action approaches we derive the dual Maxwell Chern-Simons-type model and show the classical equivalence between the two theories. At the quantum level the master action approach in general requires the addition of an awkward extra term to the Maxwell Chern-Simons-type theory. Only in the case of a linear coupling in the self-dual field can the extra term be dropped and we are able to establish the quantum equivalence of gauge invariant correlation functions in both theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free action for massless Ramond-Ramond fields is derived from closed superstring field theory using the techniques of Siegel and Zwiebach. For the uncompactified Type IIB superstring, this gives a manifestly Lorentz-covariant action for a self-dual five-form field strength. Upon compactification to four dimensions, the action depends on a U(1) field strength from 4D N = 2 supergravity. However, unlike the standard Maxwell action, this action is manifestly invariant under the electromagnetic duality transformation which rotates F-mn into epsilon(mnpq)F(pq).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The methods of effective field theory are used to explore the theoretical and phenomenological aspects of the torsion field. The spinor action coupled to the electromagnetic field and torsion possesses an additional softly broken gauge symmetry. This symmetry enables one to derive the unique form of the torsion action compatible with unitarity and renormalizability. It turns out that the antisymmetric torsion field is equivalent to a massive axial vector field. The introduction of scalars leads to serious problems which are revealed after the calculation of the leading two-loop divergences. Thus the phenomenological aspects of torsion may be studied only for the fermion-torsion systems. In this part of the paper we obtain upper bounds for the torsion parameters using present experimental data on forward-backward Z-pole asymmetries, data on the experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and also TEVATRON limits on the cross section of a new gauge boson, which could be produced as a resonance at high energy pp collisions. The present experimental data enable one to put limits on the torsion parameters for the various ranges of the torsion mass. We emphasize that for a torsion mass of the order of the Planck mass no independent theory for torsion is possible, and one must directly use string theory. © 1999 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the manifestly spacetime-supersymmetric version of open superstring field theory, we construct the free action for the first massive states of the open superstring compactified to four dimensions. This action is in N = 1 D = 4 superspace and describes a massive spin-2 multiplet coupled to two massive scalar multiplets. © 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the effective action for quantum electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson. We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e2/m. ©2000 The American Physical Society.