972 resultados para ab initio electronic structure theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equilibrium distances, binding energies, and vibrational frequencies have been obtained and compared with available experimental data. From binding-energy considerations, the atop and eclipsed sites seem to be the most favorable ones and thus a coadsorption picture may be suggested. Group-III metals exhibit a similar behavior and the same is true for Si(111) and Ge(111) surfaces when chemisorption is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase and ab initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power electronic converter drives use, for the sake of high efficiency, pulse-width modulation that results in sequences of high-voltage high-frequency steep-edged pulses. Such a signal contains a set of high harmonics not required for control purposes. Harmonics cause reflections in the cable between the motor and the inverter leading to faster winding insulation ageing. Bearing failures and problems with electromagnetic compatibility may also result. Electrical du/dt filters provide an effective solution to problems caused by pulse-width modulation, thereby increasing the performance and service life of the electrical machines. It is shown that RLC filters effectively decrease the reflection phenomena in the cable. Improved (simple, but effective) solutions are found for both differential- and common-mode signals; these solutions use a galvanic connection between the RLC filter star point and the converter DC link. Foil chokes and film capacitors are among the most widely used components in high-power applications. In actual applications they can be placed in different parts of the cabinet. This fact complicates the arrangement of the cabinet and decreases the reliability of the system. In addition, the inductances of connection wires may prevent filtration at high frequencies. This thesis introduces a new hybrid LC filter that uses a natural capacitance between the turns of the foil choke based on integration of an auxiliary layer into it. The main idea of the hybrid LC filter results from the fact that both the foil choke and the film capacitors have the same roll structure. Moreover, the capacitance between the turns (“intra capacitance”) of the foil inductors is the reason for the deterioration of their properties at high frequencies. It is shown that the proposed filter has a natural cancellation of the intra capacitance. A hybrid LC filter may contain two or more foil layers isolated from each other and coiled on a core. The core material can be iron or even air as in the filter considered in this work. One of the foils, called the main foil, can be placed between the inverter and the motor cable. Other ones, called auxiliary foils, may be connected in star to create differential-mode noise paths, and then coupled to the DC link midpoint to guarantee a traveling path, especially for the common-mode currents. This way, there is a remarkable capacitance between the main foil and the auxiliary foil. Investigations showed that such a system can be described by a simple equivalent LC filter in a wide range of frequencies. Because of its simple hybrid construction, the proposed LC filter can be a cost-effective and competitive solution for modern power drives. In the thesis, the application field of the proposed filter is considered and determined. The basics of hybrid LC filter design are developed further. High-frequency behaviour of the proposed filter is analysed by simulations. Finally, the thesis presents experimental data proving that the hybrid LC filter can be used for du/dt of PWM pulses and reduction of common-mode currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H), and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O) to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O) that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577) and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fluorescence excitation spectrum of formic acid monomer (HCOOH) , has been recorded in the 278-246 nm region and has been attributed to an n >7r* electron promotion in the anti conformer. The S^< S^ electronic origins of the HCOOH/HCOOD/DCOOH/DCOOD isotopomers were assigned to weak bands observed at 37431.5/37461.5/37445.5/37479.3 cm'''. From a band contour analysis of the 0°^ band of HCOOH, the rotational constants for the excited state were estimated: A'=1.8619, B'=0.4073, and C'=0.3730 cm'\ Four vibrational modes, 1/3(0=0), j/^(0-C=0) , J/g(C-H^^^) and i/,(0-H^yJ were observed in the spectrum. The activity of the antisymmetric aldehyde wagging and hydroxyl torsional modes in forming progressions is central to the analysis, leading to the conclusion that the two hydrogens are distorted from the molecular plane, 0-C=0, in the upper S. state. Ab initio calculations were performed at the 6-3 IG* SCF level using the Gaussian 86 system of programs to aid in the vibrational assignments. The computations show that the potential surface which describes the low frequency OH torsion (twisting motion) and the CH wagging (molecular inversion) motions is complex in the S^ excited electronic state. The OH and CH bonds were calculated to be twisted with respect to the 0-C=0 molecular frame by 63.66 and 4 5.76 degrees, respectively. The calculations predicted the existence of the second (syn) rotamer which is 338 cm'^ above the equilibrium configuration with OH and CH angles displaced from the plane by 47.91 and 41.32 degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.