959 resultados para XAD7 IMPREGNATED RESINS
Resumo:
Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Objectives: This study evaluated the effect of disinfection by immersion in sodium perborate (50 degrees C/10 min) or microwave irradiation (650 W/6 min) on the linear dimensional change (LDC) of four reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) and one heat-polymerizing denture base resin (Lucitone 550-L). Methods: Specimens (50.0 mm diameter, 0.5 mm thickness) were made using a split mold with reference points, and divided into two controls and four test groups (u = 8). The distances between the points were measured on the mold (baseline readings), and compared to those obtained from the specimens after: polymerization or immersion in water (37 degrees C) for 7 days (controls); 2 or 7 cycles of disinfection by immersion or microwave irradiation. Results: the two-way ANOVA and Tukey's test (alpha = 0.05) showed that microwave disinfection significantly increased the mean LDC of materials L (-1.43%), N (-1.27%) and K (-1.06%). Material N also exhibited a significant increase in LDC after two cycles of chemical disinfection (-0.73%). For U (-0.47%) and T (-0.21%) materials, no significant changes in LDC were found. Conclusions: Microwave disinfection increases the shrinkage of materials L, N, and K. The dimensional stability of resins U and T was not affected by the disinfection methods evaluated. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Statement of the problem. In selecting a disinfectant for dental prostheses, compatibility between the disinfectant and the type of denture base material must be considered to avoid adverse effects on the hardness of the acrylic resin.Purpose. This study investigated the hardness of 2 denture base resins after disinfection and long-term water immersion.Material and methods. Thirty-two disk-shaped specimens (13 mm in diameter and 8 mm thick) were fabricated from each resin (Lucitone 550 and QC-20), polished, stored in water at 37degreesC for 48 hours, and submitted to hardness tests (Vickers hardness number [VHN]) before disinfection. Disinfection methods included scrubbing with 4% chlorhexidine gluconate for 1 minute, immersion for 10 minutes in I of the tested disinfectant Solutions (n=8) (3.78% sodium perborate, 4% chlorhexidine gluconate, or 1% sodium hypochorite), and immersion in water for 3 minutes. The disinfection procedures were repeated 4 times, and 12 hardness measurements were made on each specimen. Control specimens (not disinfected) were stored in water for 56 minutes. Hardness tests (VHN) were also performed after 15, 30, 60, 90, and 120 days of storage in water. Statistical analyses of data were conducted with a repeated measures 3-way analysis of variance (ANOVA) and Tukey post-hoc test (alpha=.05).Results. Mean values +/- SD for Lucitone 550 (16.52 +/- 0.94 VHN) and QC-20 (9.61 +/- 0.62 VHN) demonstrated a significant (P<.05) decrease in hardness after disinfection, regardless of material and disinfectant solutions used (Lucitone 550: 15.25 +/- 0.74; QC-20: 8.09 +/- 0.39). However, this effect was reversed after 15 days of storage in water. Both materials exhibited a continuous increase (P<.05) in hardness values for up to 60 days of water storage, after which no significant change was observed.Conclusion. Within the limitations of this in vitro study, QC-20 and Lucitone 550 specimens exhibited significantly lower hardness values after disinfection regardless of the disinfectant solution used.
Resumo:
Objectives: This study investigated the effect of microwave disinfection (650 W/6 min) on the flexural strength of five hard chairside reline resins (Kooliner, Duraliner II, Tokuso Rebase Fast, Ufi Get Hard, New Truliner) and one denture base resin (Lucitone 550).Methods: Thirty-two specimens (3.1x10x64 mm) from each acrylic resin were produced and divided into four groups of eight specimens each. The flexural test was performed after polymerization (G1), after two cycles of microwave disinfection (G2), after 7 days storage in water at 37 degrees C (G3) and after seven cycles of microwave disinfection (G4). Specimens from group G4 were microwaved daily being stored in water at 37 degrees C between exposures. The specimens were placed in three-point bend fixture in a MTS machine and loaded until failure. The flexural values (MPa) were submitted to ANOVA and Tukey's test (p=0.05).Results: Two cycles of microwave disinfection promoted a significant increase in flexural strength for materials Kooliner and Lucitone 550. After seven cycles of microwave disinfection, materials Kooliner and New Truliner showed a significant increase (p<0.05) in flexural values. The flexural strength of the material Tokuso Rebase was not significantly affected by microwave irradiation. Seven cycles of microwave disinfection resulted in a significant decrease in the flexural strength of material Duraliner II. Material Ufi Get Hard was the only resin detrimentally affected by microwave disinfection after two and seven cycles.Conclusions: Microwave disinfection did not adversely affect the flexural strength of all tested materials with the exception of material Ufi Get Hard. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
During microwave disinfection, the dentures are exposed to water at high temperature and this may affect the bond between the denture teeth and the acrylic resin from which dentures are made. In this study, a shear test was used to evaluate the effect of microwave disinfection (650W/6 min) on the bond strength of two types of denture teeth to three acrylic resins, with different polymerization methods. The specimens were submitted to the shear tests (0.5 mm/min) after: immersion in water (37 degrees C) for 48 h or 8 days (controls); two or seven cycles of microwave disinfection (test groups). Data (MPa) were analyzed using three-way ANOVA and Tukey HSD test (alpha = 0.05). Microwave disinfection did not adversely affect the bond strength of all tested materials with the exception of QC-20 bonded to SR Vivodent PE, for which a significant reduction was recorded after seven cycles of irradiation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Mechanical properties of the acrylic resins used for denture fabrication may be influenced by water and temperature. Thus, the aim of this study was to evaluate the effect of thermocycling on the flexural and impact strength of a high-impact (Lucitone 199) and a urethane-based denture material (Eclipse).Materials and methods: Flexural strength (64 x 10 x 3.3 mm) and impact strength (60 x 6 x 4 mm) specimens were made following the manufacturers' instructions and assigned to two groups (n = 10): control (C) - not thermocycled - and T - thermocycled (5000 cycles between 5 and 55 degrees C). Specimens were submitted to three-point bending and Charpy impact tests.Results: Flexural strength (MPa) and impact strength (kJ/m(2)) data were analysed with two-way ANOVA (p = 0.05). The flexural strength of material Eclipse (C, 136.5; T, 130.7) was significantly higher than that of resin Lucitone 550 (C, 99.4; T, 90.1). Material Eclipse exhibited significantly higher impact strength (C, 6.9; T, 5.3) than the resin Lucitone 550 (C, 3.5; T, 3.0). For both materials, a significant decrease in flexural and impact strengths was observed when the specimens were thermocycled.Conclusion: Flexural and impact strengths were higher for Eclipse than for Lucitone 550, in both groups. Thermocycling decreased the flexural and impact strengths of Eclipse and Lucitone 550.
Resumo:
Objectives:Microleakage is a pre-stage of debonding between hard chairside relines and denture base acrylic resins. Therefore, it is important to assess them with regard to the longevity of the relined denture. This study investigated the effect of thermal cycling on the microleakage at the interface of three hard chairside reline resins and three denture base resins.Material and methods:Rectangular bars (12 mm x 3 mm x 3 mm) of Lucitone 550, Acron MC and QC 20 were made and relined with Kooliner, Tokuyama Rebase Fast II and Ufi Gel Hard, Lucitone 550, Acron MC and QC 20 resins. Specimens were divided into one control and two test groups (n = 10). In specimens of the control group, the microleakage was performed after the reline procedure. In Test Group 1, the specimens were stored for 24 h in distilled water at room temperature and in Test Group 2; the specimens were thermal cycled from 5 to 55 degrees C for 5000 cycles with a 30-s dwell time. Subsequently, all specimens were immersed in 50% silver nitrate solutions for 24 h. All specimens were sectioned longitudinally into three fractions and the lateral sections were examined (n = 20). Silver nitrate stain penetration was examined under a stereoscopic lens with x30 magnification, and the images were captured. Leica Qwin image analysis software was used to determine microleakage at the interface of the materials. Data were analysed using the Kruskal-Wallis test at a 95% level of significance.Results:For all cycles, there were no statistically significant differences between thermal cycled and non-thermal cycled groups (p > 0.05).Conclusion:It can be concluded that thermal cycling had no effect on the microleakage.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)